题目内容
3.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A、B,使得曲线y=f(x)在点A、B处的切线互相垂直,则实数a的取值范围为( )| A. | $[-\frac{1}{2},\frac{1}{2}]$ | B. | $[-\sqrt{2},\sqrt{2}]$ | C. | $(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$ | D. | [-1,1] |
分析 求出原函数的导函数,设出A,B的坐标,代入导函数,由函数在A,B处的导数等于0列式,换元后得到关于a的一元二次方程,结合线性规划知识求得a的取值范围.
解答 解:由f(x)=ax+sinx+cosx,得f′(x)=a+cosx-sinx,
设A(x1,y1),B(x2,y2),
则f′(x1)=a+cosx1-sinx1,f′(x2)=a+cosx2-sinx2.
由曲线y=f(x)在点A、B处的切线互相垂直,得
a2+[(cosx1-sinx1)+(cosx2-sinx2)]a+(cosx1-sinx1)(cosx2-sinx2)+1=0.
令m=cosx1-sinx1,n=cosx2-sinx2,
则m∈[-$\sqrt{2}$,$\sqrt{2}$],n∈[-$\sqrt{2}$,$\sqrt{2}$],
∴a2+(m+n)a+mn+1=0.
△=(m+n)2-4mn-4=(m-n)2-4,
∴0≤(m-n)2-4≤4.
当m-n=$±2\sqrt{2}$时,m+n=0,
又a=$\frac{-(m+n)±\sqrt{(m-n)^{2}-4}}{2}$.
∴-1≤a≤1.
∴函数f(x)的图象上存在不同的两点A,B,
使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为[-1,1].
故选D.
点评 本题考查利用导数研究曲线上某点的切线方程,考查了数学转化思想方法,解答的关键在于由关于a的方程的根求解a的范围,是有一定难度题目.
练习册系列答案
相关题目
13.化简$\frac{cos2α}{{4{{sin}^2}(\frac{π}{4}+α)tan(\frac{π}{4}-α)}}$=( )
| A. | cosα | B. | sinα | C. | 1 | D. | $\frac{1}{2}$ |
14.已知函数$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的图象关于直线x=1对称,把f(x)的图象向右平移3个单位长度后,所得图象对应的函数解析式为( )
| A. | y=sin($\frac{π}{3}$x+$\frac{π}{6}$) | B. | y=sin($\frac{π}{3}$x-$\frac{π}{6}$) | C. | y=cos($\frac{π}{3}$x+$\frac{π}{6}$) | D. | y=sin($\frac{π}{3}$x-$\frac{5π}{6}$) |
11.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则入射光线所在直线的斜率为( )
| A. | $\frac{3}{2}$或$\frac{2}{3}$ | B. | $\frac{4}{3}$或$\frac{3}{4}$ | C. | $\frac{5}{3}或\frac{3}{5}$ | D. | $\frac{5}{4}或\frac{4}{5}$ |
18.“函数f(x)=ax+3在(-1,2)上存在零点”是“3<a<4”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
8.直线x-y=0与圆x2+y2=1的位置关系是( )
| A. | 相切 | B. | 相离 | ||
| C. | 相交且直线过圆心 | D. | 相交且直线不过圆心 |