题目内容

已知数列{an}及fn(x)=a1x+a2x2+…anxn,fn(-1)=(-1)nn,n∈N+
(1)求a1,a2,a3的值,并求数列{an}的通项公式;
(2)若(
1
2
n•an
1
4
m2+
3
2
m-1对一切正整数n恒成立,求实数m的取值范围;
(3)求证:fn
1
3
)<1.
考点:二项式系数的性质
专题:综合题,二项式定理
分析:(1)将x=-1代入函数fn(x)=a1x+a2x2+…+anxn中,分别令n=1,2,3便可以求出a1、a2、a3的值;利用题中的公式先求出an+1的表达式即可求出数列an的通项公式;
(2)(
1
2
n•an
1
4
m2+
3
2
m-1对一切正整数n恒成立,等价于
1
4
m2+
3
2
m-1≥
3
4
,即可求实数m的取值范围;
(3)利用数列的差项相减法便可求出fn
1
3
)的表达式,进而可以证明fn
1
3
)<1.
解答: (1)解:由已知f1(-1)=-a1=-1,∴a1=1
f2(-1)=-a1+a2=2,∴a2=3,
f3(-1)=-a1+a2-a3=-3,∴a3=5
∵(-1)n+1•an+1=fn+1(-1)-fn(-1)=(-1)n+1•(n+1)-(-1)n•n
∴an+1=(n+1)+n
即an+1=2n+1
∴an=2n-1;
(2)解:∵(
1
2
n•an
1
4
m2+
3
2
m-1对一切正整数n恒成立,
1
4
m2+
3
2
m-1≥
3
4

∴m≤-7或m≥1;
(3)证明:fn(x)=x+3x2+5x3++(2n-1)xn
∴fn
1
3
)=
1
3
+3(
1
3
2+5(
1
3
3+…+(2n-1)(
1
3
n           ①
1
3
fn
1
3
)=(
1
3
2+3(
1
3
3+5(
1
3
4+…+(2n-1)(
1
3
n+1   ②
①─②,整理得fn
1
3
)=1-
n-1
3n

∴fn
1
3
)<1.
点评:本题主要考查了等差数列的通项公式以及数列与函数的综合运用,考查了学生的计算能力和对数列的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网