题目内容

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*),数列{bn}满足bn=2n•an
(1)求a1
(2)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(3)设cn=log2
n
an
,数列{
2
cncn+2
}的前n项和为Tn,求满足Tn
25
21
(n∈N*)的n的最大值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件,令n=1,能求出a1=
1
2

(2)由已知条件推导出2an=an-1+(
1
2
n-1.所以2n•an=2n-1•an-1+1.由bn=2n•an,得bn=bn-1+1.由此能求出bn=n,an=
n
2n

(3)由cn=log2
n
an
=log22n=n,知
2
cncn+2
=
2
n(n+2)
=
1
n
-
1
n+2
.由此利用裂项求和法能求出n的最大值.
解答: 解(1)令n=1,S1=-a1-(
1
2
)0+2

解得a1=
1
2

(2)证明:在Sn=-an-(
1
2
n-1+2中,
当n≥2时,Sn-1=-an-1-(
1
2
n-2+2,
∴an=Sn-Sn-1=-an+an-1+(
1
2
n-1
即2an=an-1+(
1
2
n-1
∴2n•an=2n-1•an-1+1.
∵bn=2n•an,∴bn=bn-1+1.
又b1=2a1=1,∴{bn}是以1为首项,1为公差的等差数列.
于是bn=1+(n-1)•1=n,∴an=
n
2n

(3)∵cn=log2
n
an
=log22n=n,
2
cncn+2
=
2
n(n+2)
=
1
n
-
1
n+2

∴Tn=(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)=1+
1
2
-
1
n+1
-
1
n+2

由Tn
25
21
,得1+
1
2
-
1
n+1
-
1
n+2
25
21
,即
1
n+1
+
1
n+2
13
42
,f(n)=
1
n+1
+
1
n+2
单调递减,
∵f(3)=
9
20
,f(4)=
11
30
,f(5)=
13
42

∴n的最大值为4.
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查最大值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网