题目内容
已知数列{an}的前n项和Sn=-an-(
)n-1+2(n∈N*),数列{bn}满足bn=2n•an
(1)求a1
(2)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(3)设cn=log2
,数列{
}的前n项和为Tn,求满足Tn<
(n∈N*)的n的最大值.
| 1 |
| 2 |
(1)求a1
(2)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(3)设cn=log2
| n |
| an |
| 2 |
| cncn+2 |
| 25 |
| 21 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件,令n=1,能求出a1=
.
(2)由已知条件推导出2an=an-1+(
)n-1.所以2n•an=2n-1•an-1+1.由bn=2n•an,得bn=bn-1+1.由此能求出bn=n,an=
.
(3)由cn=log2
=log22n=n,知
=
=
-
.由此利用裂项求和法能求出n的最大值.
| 1 |
| 2 |
(2)由已知条件推导出2an=an-1+(
| 1 |
| 2 |
| n |
| 2n |
(3)由cn=log2
| n |
| an |
| 2 |
| cncn+2 |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解(1)令n=1,S1=-a1-(
)0+2,
解得a1=
.
(2)证明:在Sn=-an-(
)n-1+2中,
当n≥2时,Sn-1=-an-1-(
)n-2+2,
∴an=Sn-Sn-1=-an+an-1+(
)n-1,
即2an=an-1+(
)n-1.
∴2n•an=2n-1•an-1+1.
∵bn=2n•an,∴bn=bn-1+1.
又b1=2a1=1,∴{bn}是以1为首项,1为公差的等差数列.
于是bn=1+(n-1)•1=n,∴an=
.
(3)∵cn=log2
=log22n=n,
∴
=
=
-
.
∴Tn=(1-
)+(
-
)+…+(
-
)=1+
-
-
.
由Tn<
,得1+
-
-
<
,即
+
>
,f(n)=
+
单调递减,
∵f(3)=
,f(4)=
,f(5)=
,
∴n的最大值为4.
| 1 |
| 2 |
解得a1=
| 1 |
| 2 |
(2)证明:在Sn=-an-(
| 1 |
| 2 |
当n≥2时,Sn-1=-an-1-(
| 1 |
| 2 |
∴an=Sn-Sn-1=-an+an-1+(
| 1 |
| 2 |
即2an=an-1+(
| 1 |
| 2 |
∴2n•an=2n-1•an-1+1.
∵bn=2n•an,∴bn=bn-1+1.
又b1=2a1=1,∴{bn}是以1为首项,1为公差的等差数列.
于是bn=1+(n-1)•1=n,∴an=
| n |
| 2n |
(3)∵cn=log2
| n |
| an |
∴
| 2 |
| cncn+2 |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
由Tn<
| 25 |
| 21 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 25 |
| 21 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 13 |
| 42 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∵f(3)=
| 9 |
| 20 |
| 11 |
| 30 |
| 13 |
| 42 |
∴n的最大值为4.
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查最大值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目