题目内容

8.已知f(x)=sin(x+$\frac{π}{4}$)+sin(x-$\frac{π}{4}$),x∈(0,2π),若f(x)=$\sqrt{2}$,则x=$\frac{π}{2}$.

分析 根据正弦函数的和差公式化简,再代值计算即可.

解答 解:f(x)=sin(x+$\frac{π}{4}$)+sin(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$cosx=$\sqrt{2}$sinx,
∵f(x)=$\sqrt{2}$,
∴$\sqrt{2}$sinx=$\sqrt{2}$,
∴sinx=1,
∴x=$\frac{π}{2}$+2kπ,k∈Z,
∵x∈(0,2π),
∴x=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$

点评 本题考查了和差公式、正弦函数的图象和性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网