题目内容
2.函数f(x)=lg$\frac{1+ax}{1-2x}$是区间(-b,b)上的奇函数(a,b∈R且a≠-2),则ab的取值范围是( )| A. | $({1,\sqrt{2}}]$ | B. | $({0,\sqrt{2}}]$ | C. | $({1,\sqrt{2}})$ | D. | $({0,\sqrt{2}})$ |
分析 利用奇函数的定义f(-x)=-f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围,利用指数函数的性质求出ab的范围.
解答 解:∵定义在区间(-b,b)内的函数f(x)=lg$\frac{1+ax}{1-2x}$是奇函数,x∈(-b,b),
∴f(-x)=-f(x),即lg$\frac{1+ax}{1-2x}$=$-lg\frac{1-ax}{1+2x}$,$\frac{1+ax}{1-2x}$=$\frac{1+2x}{1-ax}$,
∴1-a2x2=1-4x2,解得a=±2,
又∵a≠-2,∴a=2;则函数f(x)=$lg\frac{1+2x}{1-2x}$,
要使函数有意义,则$\frac{1+2x}{1-2x}$>0,即(1+2x)(1-2x)>0
解得:-$\frac{1}{2}$<x<$\frac{1}{2}$,即函数f(x)的定义域为:(-$\frac{1}{2}$,$\frac{1}{2}$),
∴(-b,b)⊆(-$\frac{1}{2}$,$\frac{1}{2}$),∴0<b≤$\frac{1}{2}$,∵y=2x是增函数,
∴ab的取值范围是(1,$\sqrt{2}$].
故选:A.
点评 本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.
练习册系列答案
相关题目
7.已知全集U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,4,5,7},则(∁UA)∩B=( )
| A. | {4} | B. | {1,5,7} | C. | {1,2,5,7,8} | D. | {1,2,4,5,7,8} |
14.已知双曲线C:mx2-ny2=1的一个焦点为F(-5,0).,实轴长为6,则双曲线C的渐近线方程为( )
| A. | y=±$\frac{4}{3}$x | B. | y=±$\frac{3}{4}$x | C. | y=±$\frac{5}{3}$x | D. | y=±$\frac{3}{5}$x |