题目内容
13.函数f(x)=log2(-x)的值域是( )| A. | (0,+∞) | B. | (2,+∞) | C. | (-∞,0) | D. | (-∞,+∞) |
分析 先构造函数g(x)=log2x,根据g(x)的值域和f(x),g(x)图象间的对称关系,得出f(x)的值域.
解答 解:设g(x)=log2x,x>0,
根据对数函数的性质,g(x)的值域为R,
而函数f(x)的图象与g(x)的图象关于y轴对称,
所以,f(x)的值域与g(x)的值域相同,
因此,f(x)的值域为为R,即(-∞,+∞),
故答案为:D.
点评 本题主要考查了对数函数的图象和性质,以及对数函数图象间对称关系的判断,属于基础题.
练习册系列答案
相关题目
3.已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+lnx,则f′(4)的值等于( )
| A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{9}{4}$ | D. | $-\frac{9}{4}$ |
4.某运输公司接受了向四川地震灾区每天至少运送180t支援物资的任务.该公司有8辆载重6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员,每辆卡车每天往返的次数是A型卡车4次,B型卡车3次;每辆卡车往返的成本费是A型卡车320元,B型卡车504元.
(1)设所需A型、B型卡车分别为x辆和y辆,每天A型车和B型车往返的成本费之和为z,请完成如表的空格;
(2)请为公司安排一下,应如何调配车辆,才能使公司所花的往返成本费最低?
(1)设所需A型、B型卡车分别为x辆和y辆,每天A型车和B型车往返的成本费之和为z,请完成如表的空格;
| A型车 | B型车 | 限量 | |
| 车辆数 | x | y | 0≤x≤8,0≤y≤4 |
| 每天运物吨数 | 24x | 30y | 24x+30y≥180 |
| 每天往返成本费 | 320x | 504y | z |