题目内容
已知数列{an}的前n项和Sn满足:Sn=
(an-1)(a为常数且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
+1,若数列{bn}为等比数列,求a的值;
(3)在满足条件(2)的情形下,设cn=2-(
+
),数列{cn}的前n项和Tn,求证:Tn<
.
| a |
| a-1 |
(1)求{an}的通项公式;
(2)设bn=
| 2Sn |
| an |
(3)在满足条件(2)的情形下,设cn=2-(
| 1 |
| 1+an |
| 1 |
| 1-an+1 |
| 1 |
| 3 |
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由Sn=
(an-1),(a为常数且a≠0,a≠1).可得当n≥2时,an=Sn-Sn-1,化为an=aan-1,利用等比数列的通项公式即可得出.
(2)bn=
+1=
+1=
(1-
)+1,由于数列{bn}为等比数列,可得
=b1b3,解出即可.
(3)cn=2-(
+
)=2-(
+
)=
-
<
-
.再利用“裂项求和”即可得出.
| a |
| a-1 |
(2)bn=
| 2Sn |
| an |
| ||
| an |
| 2a |
| a-1 |
| 1 |
| an |
| b | 2 2 |
(3)cn=2-(
| 1 |
| 1+an |
| 1 |
| 1-an+1 |
| 1 | ||
1+
|
| 1 | ||
1-
|
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
解答:
(1)解:∵Sn=
(an-1),(a为常数且a≠0,a≠1).
∴当n≥2时,an=Sn-Sn-1=
[(an-1)-(an-1-1)]=
(an-an-1),
化为an=aan-1,
∴数列{an}是等比数列,
a1=
(a1-1),解得a1=a.
∴an=an.
(2)解:bn=
+1=
+1=
(1-
)+1,
∵数列{bn}为等比数列,
∴
=b1b3,
∴[
(1-
)+1]2=[
(1-
)+1][
(1-
)+1],
化为
(
+
-
)(
+1)=0,
∴3a-1=0,
解得a=
.
(3)证明:cn=2-(
+
)=2-(
+
)=
-
<
-
.
∴Tn<(
-
)+(
-
)+…+(
-
)
=
-
<
.
| a |
| a-1 |
∴当n≥2时,an=Sn-Sn-1=
| a |
| a-1 |
| a |
| a-1 |
化为an=aan-1,
∴数列{an}是等比数列,
a1=
| a |
| a-1 |
∴an=an.
(2)解:bn=
| 2Sn |
| an |
| ||
| an |
| 2a |
| a-1 |
| 1 |
| an |
∵数列{bn}为等比数列,
∴
| b | 2 2 |
∴[
| 2a |
| a-1 |
| 1 |
| a2 |
| 2a |
| a-1 |
| 1 |
| a |
| 2a |
| a-1 |
| 1 |
| a3 |
化为
| 2a |
| a-1 |
| 1 |
| a3 |
| 1 |
| a |
| 1 |
| a2 |
| 2a |
| a-1 |
∴3a-1=0,
解得a=
| 1 |
| 3 |
(3)证明:cn=2-(
| 1 |
| 1+an |
| 1 |
| 1-an+1 |
| 1 | ||
1+
|
| 1 | ||
1-
|
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴Tn<(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
点评:本题考查了等比数列的通项公式及其性质、“裂项求和”、“放缩法”,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
已知:两个非零向量
=(m-1,n-1),
=(m-3,n-3),且
与
的夹角是钝角或直角,则m+n的取值范围是( )
| a |
| b |
| a |
| b |
A、(
| ||||
| B、(2,6) | ||||
C、[
| ||||
| D、[2,6] |
已知平面向量
,
满足|
|=
,|
|=2,且(
-
)⊥
,则
与
的夹角为( )
| a |
| b |
| a |
| 3 |
| b |
| a |
| b |
| a |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|
若函数f(x)=|ax+x2-xlna-t|-1(a>1)有三个零点,则t的值是( )
| A、2 | B、4 | C、8 | D、0 |
设
=(t,1)(t∈Z),
=(2,4),满足|
|≤4,则△OAB为直角三角形的概率是( )
| OA |
| OB |
| OA |
A、
| ||
B、
| ||
C、
| ||
D、
|