题目内容
“0<x<1”是“log2(x+1)<1”的( )
| A、充分非必要条件 |
| B、必要非充分条件 |
| C、充分必要条件 |
| D、既非充分也非必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式之间的关系,结合充分条件和必要条件的定义进行判断即可.
解答:
解:由log2(x+1)<1得0<x+1<2,解得-1<x<1,
则“0<x<1”是“log2(x+1)<1”的充分不必要条件,
故选:A
则“0<x<1”是“log2(x+1)<1”的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.
练习册系列答案
相关题目
设函数f(x)=x3-3x2+3x-1,则f(x)的反函数f-1(x)为( )
A、f-1(x)=1+
| |||
B、f-1(x)=1+
| |||
C、f-1(x)=1-
| |||
D、f-1(x)=1-
|
已知全集为U=R,M={x|x2-x>0},N={x|
<0},则有( )
| x-1 |
| x |
| A、M∪N=R |
| B、M∩N=∅ |
| C、∁UN=M |
| D、∁UN⊆N |
“a>b>0”是“a2>b2”成立的( )条件.
| A、必要不充分 |
| B、充分不必要 |
| C、充要 |
| D、既不充分也不必要 |
R表示实数集,集合M={x∈R|0<log3x<1},N={x∈R||2x-3|<1},则( )
| A、M∩N=N |
| B、M∪N=N |
| C、(∁RN)∩M=φ |
| D、(∁RM)∩N=φ |
已知F1,F2为双曲线
-
=1的左、右焦点,P(3,1)为双曲线内一点,点A在双曲线上,则|AP|+|AF2|的最小值为( )
| x2 |
| 5 |
| y2 |
| 4 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|