题目内容
9.某次招聘考试中,考生甲在答对第一道题的情况下也答对第二道题的概率为0.8,这两道题均答对的概率为0.5,则考生甲答对第一道题的概率为( )| A. | $\frac{7}{20}$ | B. | $\frac{1}{20}$ | C. | $\frac{5}{8}$ | D. | $\frac{2}{7}$ |
分析 设事件A表示“考生甲在答对第一道题”,事件B表示“考生甲在答对第二道题”,由已知得P(B|A)=0.8,P(AB)=0.5,由此利用条件概率计算公式能求出考生甲答对第一道题的概率.
解答 解:设事件A表示“考生甲在答对第一道题”,事件B表示“考生甲在答对第二道题”,
∵某次招聘考试中,考生甲在答对第一道题的情况下也答对第二道题的概率为0.8,
这两道题均答对的概率为0.5,
∴P(B|A)=0.8,P(AB)=0.5,
∵P(B|A)=$\frac{P(AB)}{P(A)}$,
∴考生甲答对第一道题的概率:P(A)=$\frac{P(AB)}{P(B|A)}$=$\frac{0.5}{0.8}$=$\frac{5}{8}$.
故选:C.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用.
练习册系列答案
相关题目
20.某高中为了解全校学生每周参加体育运动的情况,随机从全校学生中抽取100名学生,统计他们每周参与体育运动的时间如下:
(1)作出样本的频率分布直方图;
(2)①估计该校学生每周参与体育运动的时间的中位数及平均数;
②若该校有学生3000人,根据以上抽样调查数据,估计该校学生每周参与体育运动的时间不低于8小时的人数.
| 每周参与运动的时间(单位:小时) | [0,4) | [4,8) | [8,12) | [12,16) | [16,20] |
| 频数 | 24 | 40 | 28 | 6 | 2 |
(2)①估计该校学生每周参与体育运动的时间的中位数及平均数;
②若该校有学生3000人,根据以上抽样调查数据,估计该校学生每周参与体育运动的时间不低于8小时的人数.
4.若实数b满足:(3+bi)(1+i)-2是纯虚数,则实数b=( )
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
18.在复平面内,复数z=$\frac{1-2i}{2-i}$对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
19.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:y=kx的距离为$2\sqrt{2}$,则直线l的斜率的取值范围是( )
| A. | $(2-\sqrt{3},2+\sqrt{3})$ | B. | $[2-\sqrt{3},2+\sqrt{3}]$ | C. | $(-∞,2-\sqrt{3})∪(2+\sqrt{3},+∞)$ | D. | $(-∞,2-\sqrt{3}]∪[2+\sqrt{3},+∞)$ |