题目内容

15.已知数列{an}满足an+1=$\sqrt{2}{a_n},{a_3}$=2,它的前n项和Sn,求$(\sqrt{2}+1){a_{31}}-{S_{30}}$的值.

分析 数列{an}满足an+1=$\sqrt{2}$an,可得:数列{an}是等比数列,公比为$\sqrt{2}$.由a3=2,可得${a}_{1}(\sqrt{2})^{2}$=2,解得a1.再利用通项公式与求和公式即可得出.

解答 解:数列{an}满足an+1=$\sqrt{2}$an,可得:数列{an}是等比数列,公比为$\sqrt{2}$.
∵a3=2,∴${a}_{1}(\sqrt{2})^{2}$=2,解得a1=1.
∴a31=$1×(\sqrt{2})^{30}$=215,S30=$\frac{(\sqrt{2})^{30}-1}{\sqrt{2}-1}$=$(\sqrt{2}+1)({2}^{15}-1)$.
∴$(\sqrt{2}+1){a_{31}}-{S_{30}}$=$(\sqrt{2}+1)$215-$(\sqrt{2}+1)({2}^{15}-1)$=$\sqrt{2}$+1.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网