题目内容

15.甲、乙两人组成“风云队”参加某电视台举办的汉字听写大赛活动,每一回合由主持人说出一个词语,并由两们选手各自按照要求规则听写,在每一回合中,如果两人都写对,则“风云队”得2分;如果只有一个写对,则“风云队”得1分;如果两人都没写对,则“风云队”得0分.已知甲每一回合写对的概率是$\frac{3}{4}$,乙每一回合写对的概率是$\frac{1}{2}$;每一回合中甲、乙写对与否互不影响,各回合结果互不影响,假设“风云队”参加了两个回合的活动.
(1)求“风云队”在两个回合中至少写对3个词语的概率;
(2)X表示“风云队”两个回合得分之和,求X的分布列和数学期望E(X).

分析 (1)“风云队”至少写对3个词语包含“甲写对1个,乙写对2个”,“甲写对2个,乙写对1个”,“甲写对2个,乙写对2个”三个基本事件,进而可得答案;
(2)由已知可得:“风云队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望.

解答 解:(1)“风云队”至少写对3个词语包含“甲写对1个,乙写对2个”,
“甲写对2个,乙写对1个”,“甲写对2个,乙写对2个”三个基本事件,
故概率P=${C}_{2}^{1}•\frac{3}{4}•(1-\frac{3}{4})•(\frac{1}{2})^{2}+(\frac{3}{4})^{2}•{C}_{2}^{1}•\frac{1}{2}•(1-\frac{1}{2})$$+(\frac{3}{4})^{2}•(\frac{1}{2})^{2}$=$\frac{33}{64}$;
(2)“风云队”两轮得分之和为X可能为:0,1,2,3,4,6,
则P(X=0)=$(1-\frac{3}{4})^{2}•(1-\frac{1}{2})^{2}$=$\frac{1}{64}$,
P(X=1)=2×[$\frac{3}{4}•(1-\frac{3}{4})•(1-\frac{1}{2})^{2}+(1-\frac{3}{4})^{2}•\frac{1}{2}•(1-\frac{1}{2})$]=$\frac{1}{8}$,
P(X=2)=$\frac{3}{4}•(1-\frac{1}{2})•\frac{3}{4}•(1-\frac{1}{2})$$+\frac{3}{4}•(1-\frac{1}{2})•(1-\frac{3}{4})•\frac{1}{2}$$+(1-\frac{3}{4})•\frac{1}{2}•\frac{3}{4}•(1-\frac{1}{2})$$+(1-\frac{3}{4})•\frac{1}{2}•(1-\frac{3}{4})•\frac{1}{2}$=$\frac{1}{4}$,
P(X=3)=2×$\frac{3}{4}•\frac{1}{2}•(1-\frac{3}{4})•(1-\frac{1}{2})$=$\frac{3}{32}$,
P(X=4)=2×[$\frac{3}{4}•(1-\frac{3}{4})•(\frac{1}{2})^{2}+\frac{1}{2}•(1-\frac{1}{2})•(\frac{3}{4})^{2}$]=$\frac{3}{8}$,
P(X=6)=$(\frac{3}{4})^{2}•(\frac{1}{2})^{2}$=$\frac{9}{64}$.
故X的分布列如下图所示:

 X 012 3 4 6
 P$\frac{1}{64}$$\frac{1}{8}$$\frac{1}{4}$  $\frac{3}{32}$  $\frac{3}{8}$  $\frac{9}{64}$
∴数学期望EX=0×$\frac{1}{64}$+1×$\frac{1}{8}$+2×$\frac{1}{4}$+3×$\frac{3}{32}$+4×$\frac{3}{8}$+6×$\frac{9}{64}$=$\frac{13}{4}$.

点评 本题考查离散型随机变量的分布列和数学期望,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网