ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ½¹¾àΪ$2\sqrt{2}$£¬F1£¬F2ΪÆä×óÓÒ½¹µã£¬MΪÍÖÔ²ÉÏÒ»µã£¬ÇÒ¡ÏF1MF2=60¡ã£¬${S_{¡÷{F_1}M{F_2}}}=\frac{{2\sqrt{3}}}{3}$£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÒÔÏß¶ÎOA£¬OBΪÁÚ±ß×÷ƽÐÐËıßÐÎOAPB£¬ÆäÖж¥µãPÔÚÍÖÔ²CÉÏ£¬OÎª×ø±êԵ㣬ÇóÖ¤£ºÆ½ÐÐËıßÐÎOAPBµÄÃæ»ýΪ¶¨Öµ£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º$c=\sqrt{2}$£¬Ôò£¬$\left\{{\begin{array}{l}{x+y=2a}\\{{x^2}+{y^2}-8=2xycos{{60}¡ã}}\\{\frac{1}{2}xysin{{60}¡ã}=\frac{{2\sqrt{3}}}{3}}\end{array}}\right.$£¬¼´¿ÉÇóµÃaµÄÖµ£¬Ôòb2=a2-c2=2£¬¼´¿ÉÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉÏòÁ¿µÄ×ø±êÔËË㣬¼´¿ÉÇóµÃPµã×ø±ê£¬ÀûÓÃΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼´¿É¼°µãµ½Ö±ÏߵľàÀ빫ʽÇóµÃƽÐÐËıßÐÎOAPBµÄÃæ»ýS=$\sqrt{6}$£¬¼´¿ÉÇó֤ƽÐÐËıßÐÎOAPBµÄÃæ»ýΪ¶¨Öµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬2c=$2\sqrt{2}$£¬¼´$c=\sqrt{2}$£¬Éè|MF1|=x£¬|MF2|=y£¬
ÔÚ¡÷F1MF2ÖУ¬$\left\{{\begin{array}{l}{x+y=2a}\\{{x^2}+{y^2}-8=2xycos{{60}¡ã}}\\{\frac{1}{2}xysin{{60}¡ã}=\frac{{2\sqrt{3}}}{3}}\end{array}}\right.$£¬¡£¨2·Ö£©
½âµÃ£ºa2=4£¬¡£¨4·Ö£©
¡àb2=a2-c2=2
¡àÍÖÔ²·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{2}=1$£®¡£¨5·Ö£©
£¨2£©Ö¤Ã÷£ºÓÉÖ±Ïßl£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{4}+\frac{y^2}{2}=1}\end{array}}\right.$£¬Ïûy¿ÉµÃ£¨2k2+1£©x2+4kmx+2m2-4=0£¬¡£¨6·Ö£©
¡÷=£¨4km£©2-4£¨2k2+1£©£¨2m2-4£©=8£¨4k2+2-m2£©£¾0£¬Ôòm2£¼4k2+2£¬
Ôò${x_1}+{x_2}=\frac{-4km}{{2{k^2}+1}}£¬{x_1}{x_2}=\frac{{2{m^2}-4}}{{2{k^2}+1}}$£¬¡£¨8·Ö£©
${y_1}+{y_2}=k£¨{x_1}+{x_2}£©+2m=\frac{{-4{k^2}m}}{{2{k^2}+1}}+2m=\frac{2m}{{2{k^2}+1}}$£¬
¶ø$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}=£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©$£¬
¡à$P£¨\frac{-4km}{{2{k^2}+1}}£¬\frac{2m}{{2{k^2}+1}}£©$¡£¨9·Ö£©
¡ßµãPÔÚÍÖÔ²ÉÏ£¬
´úÈëÍÖÔ²·½³Ì£º$\frac{1}{4}{£¨\frac{-4km}{{2{k^2}+1}}{£©^2}+\frac{1}{2}£¨\frac{2m}{{2{k^2}+1}}£©^2}=1$£¬
ÕûÀí¿ÉµÃ£º${m^2}={k^2}+\frac{1}{2}$£¬Âú×ã¡÷£¾0£¬¡£¨10·Ö£©
ÓÖ$|AB|=\sqrt{1+{k^2}}|{x_1}-{x_2}|=\sqrt{1+{k^2}}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}$=$\sqrt{1+{k^2}}\sqrt{£¨\frac{-4km}{{2{k^2}+1}}{£©^2}-4\frac{{2{m^2}-4}}{{2{k^2}+1}}}=\sqrt{1+{k^2}}\frac{{\sqrt{8£¨4{k^2}+2-{m^2}£©}}}{{2{k^2}+1}}=\frac{{2\sqrt{3}\sqrt{1+{k^2}}}}{{\sqrt{2{k^2}+1}}}$¡£¨11·Ö£©
ÉèOµ½Ö±ÏßABµÄ¾àÀëΪd£¬Ôò$d=\frac{|m|}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{{k^2}+\frac{1}{2}}}}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{2}}}{2}•\frac{{\sqrt{2{k^2}+1}}}{{\sqrt{{k^2}+1}}}$£¬¡£¨12·Ö£©
¡à${S_{ƽÐÐËıßÐÎOAPB}}=|AB|•d=\frac{{2\sqrt{3}\sqrt{1+{k^2}}}}{{\sqrt{2{k^2}+1}}}•\frac{{\sqrt{2}}}{2}•\frac{{\sqrt{2{k^2}+1}}}{{\sqrt{{k^2}+1}}}=\sqrt{6}$£¬
ƽÐÐËıßÐÎOAPBµÄÃæ»ýΪ¶¨Öµ£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬Î¤´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬ÓàÏÒ¶¨Àí¼°ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | x2-$\frac{{y}^{2}}{16}$=1 | B£® | $\frac{{x}^{2}}{16}$-y2=1 | C£® | $\frac{{y}^{2}}{16}$-x2=1 | D£® | y2-$\frac{{x}^{2}}{16}$=1 |
| A£® | {0£¬2} | B£® | {-1£¬0£¬1} | C£® | {-3£¬-2£¬-1£¬0£¬1£¬2} | D£® | [0£¬2] |
| A£® | 1 | B£® | -4 | C£® | $-\frac{1}{2}$ | D£® | -1 |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
¢Ùy=log2x£»
¢Úy=2x£»
¢Ûy=$\frac{1}{x}$ÖУ¬
ËùÓеĵȲîÔ´º¯ÊýµÄÐòºÅÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù | B£® | ¢Ù¢Ú | C£® | ¢Ú¢Û | D£® | ¢Ù¢Û |
| A£® | 16£¬ºÚÉ« | B£® | 16£¬°×É«»òºÚÉ« | C£® | 32£¬ºÚÉ« | D£® | 32£¬°×É« |