题目内容

20.已知等差数列{an}的前n项和为Sn,公差d=2,S10=120.
(1)求an;      
 (2)若bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n-1}}}$,求数列{bn}的前n项和为Tn

分析 (1)通过公差d=2可知S10=10a1+$\frac{10×9}{2}$×2=120,进而可知数列{an}是以3为首项、2为公差的等差数列,计算即得结论;
(2)通过(1)可知an=2n+1,通过分母有理化、裂项可知bn=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$),并项相加即得结论.

解答 解:(1)依题意,S10=10a1+$\frac{10×9}{2}$×2=120,
解得:a1=3,
∴数列{an}是以3为首项、2为公差的等差数列,
∴an=3+2(n-1)=2n+1;
(2)由(1)可知an=2n+1,
∴bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n-1}}}$=$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$),
∴Tn=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+…+$\sqrt{2n+1}$-$\sqrt{2n-1}$)
=$\frac{1}{2}$( $\sqrt{2n+1}$-1)
=$\frac{\sqrt{2n+1}-1}{2}$.

点评 本题考查数列的通项与求和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网