题目内容

设α,β为锐角,且(1+sinα-cosα)(1+sinβ-cosβ)=2sinαsinβ,则α+β=
 
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由条件利用同角三角函数的基本关系,二倍角公式、两角和的正切公式求得tan(α+β)=1,结合α,β为锐角,可得α+β 的值.
解答: 解:∵
1+sinα-cosα
sinα
=
sinα+2sin2
α
2
sinα
=1+tan
α
2
,同理可得
1+sinβ-cosβ
sinβ
=1+tan
β
2

∴由(1+sinα-cosα)(1+sinβ-cosβ)=2sinαsinβ 可得
1+sinα-cosα
sinα
1+sinβ-cosβ
sinβ
=2,
∴(1+tan
α
2
 )(1+tan
β
2
)=1+tan
α
2
+tan
β
2
+tan
α
2
tan
β
2
=2,
tan
α
2
+tan
β
2
=1-tan
α
2
tan
β
2
,故tan
α+β
2
=
tan
α
2
+tan
β
2
1-tan
α
2
tan
β
2
=1,
α+β
2
=
π
4
,α+β=
π
2

故答案为:
π
2
点评:本题主要考查同角三角函数的基本关系,二倍角公式,两角和的正切公式,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网