题目内容

6.已知α∈($\frac{3}{2}$π,2π),且满足cos(α+$\frac{2017}{2}$π)=$\frac{3}{5}$,则sinα+cosα=(  )
A.-$\frac{7}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

分析 根据诱导公式化简和同角三角函数关系式,求出sinα,cosα的值.即可求sinα+cosα的值.

解答 解:由cos(α+$\frac{2017}{2}$π)=$\frac{3}{5}$,
可得:cos(1008π+α+$\frac{π}{2}$)=cos($α+\frac{π}{2}$)=-sinα=$\frac{3}{5}$,即sinα=$-\frac{3}{5}$.
∵α∈($\frac{3}{2}$π,2π),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4}{5}$.
则sinα+cosα=$-\frac{3}{5}+\frac{4}{5}=\frac{1}{5}$.
故选:C.

点评 本题考查了诱导公式化简能力和同角三角函数关系式计算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网