题目内容

11.函数sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}$,设a=$\frac{1}{{{{log}_{\frac{1}{4}}}\frac{1}{2015}}}$+$\frac{1}{{{{log}_{\frac{1}{504}}}\frac{1}{2015}}}$,b=2017,则$\frac{a+b+(a-b)sgn(a-b)}{2}$的值为2017.

分析 求出a=$lo{g}_{\frac{1}{2015}}\frac{1}{2016}$,由此利用函数性质能求出$\frac{a+b+(a-b)sgn(a-b)}{2}$的值.

解答 解:∵sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}$,
设$a=\frac{1}{{{{log}_{\frac{1}{4}}}\frac{1}{2015}}}+\frac{1}{{{{log}_{\frac{1}{504}}}\frac{1}{2015}}},b=2017$,
∴a=$lo{g}_{\frac{1}{2015}}\frac{1}{4}$+$lo{g}_{\frac{1}{2015}}\frac{1}{504}$=$lo{g}_{\frac{1}{2015}}\frac{1}{2016}$,

∴$\frac{a+b+(a-b)sgn(a-b)}{2}$=$\frac{lo{g}_{\frac{1}{2015}}\frac{1}{2016}+2017+(lo{g}_{\frac{1}{2015}}\frac{1}{2016}-2017)×(-1)}{2}$=2017.
故答案为:2017.

点评 本题考查函数值的求不地,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网