题目内容
8.设集合A={x|x2+x-2≤0},B={x|0≤x≤4},则A∩B=( )| A. | [-2,4] | B. | [0,1] | C. | [-2,0] | D. | [1,4] |
分析 运用交集的定义计算即可得到所求.
解答 解:集合A={x|x2+x-2≤0}={x|-2≤x≤1}=[-2,1],
B={x|0≤x≤4}=[0,4],
则A∩B={x|0≤x≤1}=[0,1],
故选:B.
点评 本题考查集合的运算,主要是交集的含义,属于基础题.
练习册系列答案
相关题目
13.函数$f(x)=tan(ωx+\frac{π}{3})(ω>0)$的最小正周期为$\frac{π}{2}$,为了得到y=tanωx的图象,只需把y=f(x)的图象上所有点( )
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个长度单位 | D. | 向左平移$\frac{π}{12}$个长度单位 |
14.已知复数$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虚数单位,则|a+bi|=( )
| A. | -1-3i | B. | $\sqrt{5}$ | C. | 10 | D. | $\sqrt{10}$ |
13.已知函数f(x)=axsinx-$\frac{3}{2}$(a∈R),若对x∈[0,$\frac{π}{2}$],f(x)的最大值为$\frac{π-3}{2}$,则函数f(x)在(0,π)内的零点个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
17.抛物线x=-8y2的焦点坐标是( )
| A. | (-$\frac{1}{32}$,0) | B. | (-2,0) | C. | ($\frac{1}{32}$,0) | D. | (0,-2) |
18.一条光线从点A(-4,0)射入,与直线y=3相交于点B(-1,3),经直线y=3反射后过点C(m,-1),直线l过点C且分别与x轴和y轴的负半轴交于P,Q两点,O为坐标原点,则当△OPQ的面积最小时直线l的方程为( )
| A. | $\frac{x}{4}$-$\frac{y}{4}$=1 | B. | $\frac{x}{2}$-$\frac{y}{6}$=1 | C. | $\frac{x}{6}$-$\frac{y}{2}$=1 | D. | $\frac{x}{12}$-$\frac{3y}{4}$=1 |