题目内容
7.已知函数f(x)=xsinx,则f($\frac{π}{11}$),f(-1),f(-$\frac{π}{3}$)的大小关系为( )| A. | f(-$\frac{π}{3}$)>f(-1)>f($\frac{π}{11}$) | B. | f(-1)>f(-$\frac{π}{3}$)>f($\frac{π}{11}$) | C. | f(-$\frac{π}{11}$)>f(-1)>f($\frac{π}{3}$) | D. | f($\frac{π}{3}$)>f($\frac{π}{11}$)>f(-1) |
分析 根据y=xsinx是偶函数,可得f(-$\frac{π}{3}$)=f($\frac{π}{3}$),又x∈[0,$\frac{π}{2}$]时,得y′>0,所以此时函数是增函数,从而得到f($\frac{π}{11}$),f(-1),f(-$\frac{π}{3}$)的大小关系.
解答 解:因为y=xsinx,是偶函数,f(-$\frac{π}{3}$)=f($\frac{π}{3}$),又x∈[0,$\frac{π}{2}$]时,
得y′=sinx+xcosx>0,所以此时函数是增函数,
所以f($\frac{π}{11}$)<f(1)<f($\frac{π}{3}$)=f(-$\frac{π}{3}$),
故选:A.
点评 本题主要考查正弦函数的单调性,奇偶性,导数的应用,考查计算能力,导数大于0,函数是增函数,是解题的关键,属于基础题.
练习册系列答案
相关题目
17.已知集合A={x|x2-x≤0},B={x|2x-1>0},则A∩B=( )
| A. | [0,$\frac{1}{2}$) | B. | [0,1] | C. | ($\frac{1}{2}$,1] | D. | ($\frac{1}{2}$,+∞) |
15.执行如图的程序框图,如果输入的a=-1,则输出的S=( )

| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
2.函数$y=sin2x-\sqrt{3}cos2x$的单调递减区间是( )
| A. | $[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$ | B. | $[{2kπ+\frac{5π}{12},2kπ+\frac{11π}{12}}](k∈Z)$ | ||
| C. | $[{kπ+\frac{5π}{12},kπ+\frac{11π}{12}}](k∈Z)$ | D. | $[{2kπ+\frac{π}{6},2kπ+\frac{2π}{3}}](k∈Z)$ |
12.在平行四边形ABCD中,若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AB}$=( )
| A. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$) | B. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$) | C. | $\frac{1}{2}$($\overrightarrow{b}$-$\overrightarrow{a}$) | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ |
16.已知F1(-c,0),F2(c,0)分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0})$的左、右焦点,P为双曲线上的一点且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{1}{2}{c^2}$,则此双曲线的离心率的取值范围是( )
| A. | [2,+∞) | B. | $[{\sqrt{3}\;,\;+∞})$ | C. | $[{\sqrt{2}\;,\;+∞})$ | D. | $[{\frac{{\sqrt{5}+1}}{2}\;,\;+∞})$ |
6.广告费用x与销售额y的统计数据如表:
根据上表可得回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的$\stackrel{∧}{a}$约等于3,据此模型预报广告费用为6万元时,销售额为( )
| 广告费用x(万元) | 1 | 2 | 4 | 5 |
| 销售额y(万元) | 10 | 26 | 35 | 49 |
| A. | 55万元 | B. | 53万元 | C. | 57万元 | D. | 59万元 |