题目内容
14.(1)a,b,c∈R+,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥\frac{1}{{\sqrt{ab}}}+\frac{1}{{\sqrt{bc}}}+\frac{1}{{\sqrt{ac}}}$(2)若x,y∈R.求证:sinx+siny≤1+sinxsiny.
分析 (1)由$\frac{1}{a}+\frac{1}{b}≥2\sqrt{\frac{1}{ab}}$,$\frac{1}{b}+\frac{1}{c}≥2\sqrt{\frac{1}{bc}},\frac{1}{a}+\frac{1}{c}≥2\sqrt{\frac{1}{ac}}$,能证明$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥\frac{1}{{\sqrt{ab}}}+\frac{1}{{\sqrt{bc}}}+\frac{1}{{\sqrt{ac}}}$.
(2)推导出sinx+siny-(1+sinxsiny)=(1-siny)(sinx-1),由此能证明sinx+siny≤1+sinxsiny.
解答 证明:(1)∵a,b,c∈R+,
∴$\frac{1}{a}+\frac{1}{b}≥2\sqrt{\frac{1}{ab}}$,$\frac{1}{b}+\frac{1}{c}≥2\sqrt{\frac{1}{bc}},\frac{1}{a}+\frac{1}{c}≥2\sqrt{\frac{1}{ac}}$,
∴$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥\frac{1}{{\sqrt{ab}}}+\frac{1}{{\sqrt{bc}}}+\frac{1}{{\sqrt{ac}}}$.
(2)∵sinx+siny-(1+sinxsiny)
=sinx+siny-1-sinxsiny
=sinx(1-siny)-(1-siny)
=(1-siny)(sinx-1),
-1≤sinx≤1,-1≤siny≤1,
∴1-siny≥0,sinx-1≤0,
∴(1-siny)(sinx-1)≤0
即sinx+siny≤1+sinxsiny.
点评 本题考查不等式的证明,是中档题,解题时要认真审题,注意均值定理、三角函数性质的合理运用.
| A. | $({1,\frac{π}{4}})$ | B. | ($\sqrt{2}$,$\frac{π}{4}$) | C. | ($\frac{1}{2}$,$\frac{π}{4}$) | D. | $({2,\frac{π}{4}})$ |
| A. | (-3,2] | B. | (-6,+∞) | C. | [6,+∞) | D. | [-3,+∞) |
| A. | 2 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 1 |
| A. | 0,1 | B. | 0,2 | C. | 1,2 | D. | 0,1,2 |
| A. | (-3,4) | B. | (4,-3) | C. | (4,3) | D. | (3,-4) |