题目内容

5.曲线y=sin x与直线x=-$\frac{π}{2}$,x=$\frac{5}{4}$π,y=0所围图形的面积为4-$\frac{\sqrt{2}}{2}$.

分析 先将围成的平面图形的面积用定积分表示出来,然后运用微积分基本定理计算定积分即可.

解答 解:解:由题意和定积分的意义可得所求面积S=-${∫}_{-\frac{π}{2}}^{0}$sinxdx+${∫}_{0}^{π}$sinxdx-${∫}_{π}^{\frac{5π}{4}}$sinxdx=cosx|${\;}_{-\frac{π}{2}}^{0}$-
cosx|${\;}_{0}^{π}$+cosx|${\;}_{π}^{\frac{5π}{4}}$=1-(-1-1)+(-$\frac{\sqrt{2}}{2}$+1)=4-$\frac{\sqrt{2}}{2}$,
故答案为:4-$\frac{\sqrt{2}}{2}$

点评 本题主要考查了定积分在求面积中的应用,运用微积分基本定理计算定积分的关键是找到被积函数的原函数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网