题目内容

17.中国乒乓球队备战里约奥运会热身赛暨选拨赛于2016年7月14日在山东威海开赛,种子选手M与B1,B2,B3三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,M获胜的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各场比赛互不影响.
(1)若M至少获胜两场的概率大于$\frac{7}{10}$,则M入选征战里约奥运会的最终大名单,否则不予入选,问M是否会入选最终的大名单?
(2)求M获胜场数X的分布列和数学期望.

分析 (1)利用相互独立事件的概率计算公式即可得出.
(2)利用相互独立事件与互斥事件的概率计算公式即可得出.

解答 解:(1)M与B1,B2,B3进行对抗赛获胜的事件分别为A,B,C,M至少获胜两场的事件为D,
则$P(A)=\frac{3}{4},P(B)=\frac{2}{3},P(C)=\frac{1}{2}$,由于事件A,B,C相互独立,
所以$P(D)=P(ABC)+P(AB\overline C)+P(A\overline BC)+P(\overline ABC)=\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{1}{3}×\frac{1}{2}$$+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}=\frac{17}{24}$,
由于$\frac{17}{24}$$>\frac{7}{10}$,所以M会入选最终的名单.
(2)M获胜场数X的可能取值为0,1,2,3,则$P(x=0)=\frac{1}{4}×\frac{1}{3}×\frac{1}{2}=\frac{1}{24}$,$P(x=1)=\frac{3}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}=\frac{6}{24}$,
$P(x=2)=\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}=\frac{11}{24}$,$P(x=0)=\frac{3}{4}×\frac{2}{3}×\frac{1}{2}=\frac{6}{24}$.

X0123
P$\frac{1}{24}$$\frac{6}{24}$$\frac{11}{24}$$\frac{6}{24}$
数学期望$E(X)=0×\frac{1}{24}+1×\frac{6}{24}+2×\frac{11}{24}+3×\frac{6}{24}=\frac{23}{12}$.

点评 本题考查了随机变量的概率分布列及其数学期望、相互独立与互斥事件的概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网