ÌâÄ¿ÄÚÈÝ
18£®Î¢ÐÅÊÇÌÚѶ¹«Ë¾ÍƳöµÄÒ»ÖÖÊÖ»úͨѶÈí¼þ£¬ËüÖ§³Ö·¢ËÍÓïÒô¶ÌÐÅ¡¢ÊÓÆµ¡¢Í¼Æ¬ºÍÎÄ×Ö£¬Ò»¾ÍƳö±ã·çÃÒÈ«¹ú£¬ÉõÖÁÓ¿ÏÖ³öÒ»ÅúÔÚ΢ÐŵÄÅóÓÑȦÄÚÏúÊÛÉÌÆ·µÄÈË£¨±»³ÆÎªÎ¢ÉÌ£©£®ÎªÁ˵÷²éÿÌì΢ÐÅÓû§Ê¹ÓÃ΢ÐŵÄʱ¼ä£¬Ä³¾Ïú»¯×±Æ·µÄ΢ÉÌÔÚÒ»¹ã³¡Ëæ»ú²É·ÃÄÐÐÔ¡¢Å®ÐÔÓû§¸÷50 Ãû£¬ÆäÖÐÿÌìÍæÎ¢Ðų¬¹ý6 СʱµÄÓû§ÁÐΪ¡°Î¢Ðſء±£¬·ñÔò³ÆÆäΪ¡°·Ç΢Ðſء±£¬µ÷²é½á¹ûÈçÏ£º| ΢ÐÅ¿Ø | ·Ç΢ÐÅ¿Ø | ºÏ¼Æ | |
| ÄÐÐÔ | 26 | 24 | 50 |
| Å®ÐÔ | 30 | 20 | 50 |
| ºÏ¼Æ | 56 | 44 | 100 |
£¨2£©ÏÖ´Óµ÷²éµÄÅ®ÐÔÓû§Öа´·Ö²ã³éÑùµÄ·½·¨Ñ¡³ö5 È˲¢´ÓÑ¡³öµÄ5 ÈËÖÐÔÙËæ»ú³éÈ¡3 ÈËÔùËÍ200 ÔªµÄ»¤·ôÆ·Ì××°£¬¼ÇÕâ3 ÈËÖС°Î¢Ðſء±µÄÈËÊýΪX£¬ÊÔÇóX µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
| P£¨K2¡Ýk0£© | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
·ÖÎö £¨1£©ÓÉÁÐÁª±í¼ÆËãK2£¬¶ÔÕÕÁÙ½çÖµ±í¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÒÀÌâÒâËù³éÈ¡µÄ5λŮÐÔÖС°Î¢Ðſء±ÓÐ3ÈË£¬µÃXµÄËùÓпÉÄÜȡֵ£¬
¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬Ð´³öX µÄ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£®
½â´ð ½â£º£¨1£©ÓÉÁÐÁª±í¿ÉÖª£¬
${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$=$\frac{100{¡Á£¨26¡Á20-30¡Á24£©}^{2}}{56¡Á44¡Á50¡Á50}$=$\frac{50}{77}$¡Ö0.649£¬
¡ß0.649£¼0.708£¬
¡àûÓÐ60%µÄ°ÑÎÕÈÏΪ¡°Î¢Ðſء±Ó롱ÐÔ±ð¡°Óйأ»
£¨2£©ÒÀÌâÒâÖª£¬Ëù³éÈ¡µÄ5λŮÐÔÖС°Î¢Ðſء±ÓÐ3ÈË£¬
¡°·Ç΢Ðſء±ÓÐ2ÈË£¬
¡àXµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£»
ÇÒP£¨X=1£©=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$£¬P£¨X=2£©=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$£¬P£¨X=3£©=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$£¬
¡àX µÄ·Ö²¼ÁÐΪ£º
| X | 1 | 2 | 3 |
| P£¨X£© | $\frac{3}{10}$ | $\frac{3}{5}$ | $\frac{1}{10}$ |
µãÆÀ ±¾Ì⿼²éÁ˶ÔÁ¢ÐÔ¼ìÑéÓëËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | £¨-3£¬0£© | B£® | £¨-2£¬0£© | C£® | £¨-3£¬-2£© | D£® | £¨0£¬3£© |
| A£® | 30¡ã | B£® | 30¡ã»ò150¡ã | C£® | 60¡ã | D£® | 60¡ã»ò120¡ã |
| A£® | a=11 | B£® | a=12 | C£® | a=13 | D£® | a=14 |
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{5¦Ð}{6}$ |