题目内容
10.设x>2,则$y=x+\frac{4}{x-2}$的最小值是6.分析 变形利用基本不等式的性质即可得出.
解答 解:∵x>2,则x-2>0,
∴$y=x+\frac{4}{x-2}$=x-2+$\frac{4}{x-2}$+2$≥2\sqrt{(x-2)•\frac{4}{x-2}}$+2=6,当且仅当x=4时取等号.
因此y的最小值是6.
故答案为:6.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.已知函数f(x)=ax2+2ax+4(-3<a<0),其图象上两点的横坐标为x1、x&2满足x1<x2,且x1+x2=1+a,则由( )
| A. | f(x1)<f(x2) | B. | f(x1)=f(x2) | ||
| C. | f(x1)>f(x2) | D. | f(x1)、f(x&2)的大小不确定 |
15.判断函数f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$的奇偶性( )
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |