题目内容

15.判断函数f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$的奇偶性(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

分析 可以看出该函数的定义域为R,根据奇函数的定义证明:f(-x)=-f(x)即可.

解答 解:∵函数$f(x)=\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$,
∴f(-x)+f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$+$\frac{\sqrt{{x}^{2}+1}-x-1}{\sqrt{{x}^{2}+1}-x+1}$=$\frac{2x-2x}{2+2\sqrt{{x}^{2}+1}}$=0,
∴f(-x)=-f(x),
∴函数是奇函数,
故选A.

点评 考查函数奇偶性的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网