题目内容
15.判断函数f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$的奇偶性( )| A. | 奇函数 | B. | 偶函数 | ||
| C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |
分析 可以看出该函数的定义域为R,根据奇函数的定义证明:f(-x)=-f(x)即可.
解答 解:∵函数$f(x)=\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$,
∴f(-x)+f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$+$\frac{\sqrt{{x}^{2}+1}-x-1}{\sqrt{{x}^{2}+1}-x+1}$=$\frac{2x-2x}{2+2\sqrt{{x}^{2}+1}}$=0,
∴f(-x)=-f(x),
∴函数是奇函数,
故选A.
点评 考查函数奇偶性的定义,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
4.点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,则|PA|2+|PB|2+|PC|2的最大值,最小值分别为( )
| A. | 84,74 | B. | 88,72 | C. | 73,63 | D. | 88,62 |