题目内容
13.直线y=$\sqrt{3}$x+4与x轴和y轴的交点分别为A,B,以AB为边做等边三角形ABC,则顶点C的坐标为(-$\frac{8\sqrt{3}}{3}$,4)或($\frac{4\sqrt{3}}{3}$,0).分析 分别求出A,B的坐标,根据勾股定理求出AB的长度,再设C(x,y),根据三角形为等边三角形和点与点的距离公式得到方程组,解的即可.
解答 解:直线y=$\sqrt{3}$x+4与x轴和y轴的交点分别为A,B,
当x=0时,y=4,即B(0,4),
当y=0时,x=-$\frac{4\sqrt{3}}{3}$,即A(-$\frac{4\sqrt{3}}{3}$,0),
∴OA=$\frac{4\sqrt{3}}{3}$,OB=4,
∴AB2=OA2+0B2=$\frac{16}{3}$+16=16×$\frac{4}{3}$=$\frac{64}{3}$
∵△ABC为等边三角形,
∴AB=BC=CA
设C(x,y),
则$\left\{\begin{array}{l}{(x+\frac{4\sqrt{3}}{3})^{2}+{y}^{2}=\frac{64}{3}}\\{{x}^{2}+(y-4)^{2}=\frac{64}{3}}\end{array}\right.$
解得$\left\{\begin{array}{l}{x=-\frac{8\sqrt{3}}{3}}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{4\sqrt{3}}{3}}\\{y=0}\end{array}\right.$,
故点C的坐标为(-$\frac{8\sqrt{3}}{3}$,4)或($\frac{4\sqrt{3}}{3}$,0).
点评 本题考查了直线方程和点与点的距离,以及勾股定理,属于中档题.
练习册系列答案
相关题目
8.已知函数f(x)=log2(1-$\frac{2x-1}{x+1}$)的定义域为A,复数z=$\frac{3-i}{1-2i}$-ai,若a∈A,则|z|的取值范围是[1,$\sqrt{5}$).
7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若|AP|=2|PB|,则椭圆的离心率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |