题目内容
(本小题满分14分)已知函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)求函数
的单调区间;
(Ⅲ)若对任意
,
,且
恒成立,求
的取值范围.
,![]()
![]()
![]()
0<a≤8
【解析】
试题分析:定义域:![]()
(Ⅰ)当a=1时,
,
,所以在点
处的切线斜率为
,所以切线为:![]()
(Ⅱ)
两根为
![]()
![]()
![]()
![]()
(Ⅲ)设g(x)=f(x)+2x,则g(x)=ax2-ax+lnx,
只要g(x)在(0,+∞)上单调递增即可,
而g′(x)=2ax-a+
=![]()
当a=0时,g′(x)=
>0,此时g(x)在(0,+∞)上单调递增;
当a≠0时,只需g′(x)≥0在(0,+∞)上恒成立,
因为x∈(0,+∞),只要2ax2-ax+1≥0,
则需要a>0,
对于函数y=2ax2-ax+1,过定点(0,1),对称轴x=
>0,只需△=a2-8a≤0,即0<a≤8,
考点:本题考查导函数
练习册系列答案
相关题目
a≥0,b≥0,a+b=1,且x1,x2为正数,y1=ax1+bx2,y2=bx1+ax2,则y1y2与x1x2的大小关系是( )
| A、y1y2≥x1x2 |
| B、y1y2≤x1x2 |
| C、y1y2>x1x2 |
| D、y1y2<x1x2 |