题目内容

15.如图,已知侧棱垂直底面的三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,点D是AB的中点.
(1)求证:AC⊥BC;
(2)求证:AC1∥平面CDB1

分析 (1)利用勾股定理能证明AC⊥BC.
(2)以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能证明AC1∥平面CDB1

解答 证明:(1)∵AC=3,AB=5,BC=4
∴AC2+BC2=AB2
∴AC⊥BC.
(2)以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,

设CC1=t,则由题意得A(3,0,0),C1(0,0,t),C(0,0,0),
B(0,4,0),D($\frac{3}{2}$,2,0),B1(0,4,t),
$\overrightarrow{CD}$=($\frac{3}{2},2,0$),$\overrightarrow{C{B}_{1}}$=(0,4,t),$\overrightarrow{A{C}_{1}}$=(-3,0,t),
设平面CDB1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=\frac{3}{2}x+2y=0}\\{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=4y+tz=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(4,-3,$\frac{12}{t}$),
∴$\overrightarrow{A{C}_{1}}•\overrightarrow{n}$=0,
∵AC1?平面CDB1,∴AC1∥平面CDB1

点评 本题考查两直线垂直的证明,考查线面平行的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网