题目内容

有一段“三段论”推理是这样的:对数函数f(x)=logax(a>0,a≠1)在(0,+∞)上是增函数,因为函数f(x)=log
1
3
x
是对数函数,所以函数f(x)=log
1
3
x
在(0,+∞)上是增函数,以上推理中(  )
A、大前提错误
B、小前提错误
C、推理形式错误
D、结论正确
考点:演绎推理的基本方法
专题:规律型,推理和证明
分析:对数函数的底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,对数函数是一个减函数,对数函数y=logax(a>0且a≠1)是增函数这个大前提是错误的.
解答: 解:∵当a>1时,函数y=logax(a>0且a≠1)是一个增函数,
当0<a<1时,此函数是一个减函数
∴y=logax(a>0且a≠1)是增函数这个大前提是错误的,
从而导致结论错.
故选A.
点评:本题考查演绎推理的基本方法,考查对数函数的单调性,解题的关键是理解函数的单调性,分析出大前提是错误的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网