题目内容
10.已知a=${∫}_{-1}^{1}$(1+$\sqrt{1-{x}^{2}}$)dx,则((a-$\frac{π}{2}$)x-$\frac{3}{x}$)9展开式中的各项系数和为-1.分析 由题意,a=${∫}_{-1}^{1}$(1+$\sqrt{1-{x}^{2}}$)dx=2+$\frac{π}{2}$,((a-$\frac{π}{2}$)x-$\frac{3}{x}$)9=(2x-$\frac{3}{x}$)9,令x=1,可得展开式中的各项系数和.
解答 解:由题意,a=${∫}_{-1}^{1}$(1+$\sqrt{1-{x}^{2}}$)dx=2+$\frac{π}{2}$,((a-$\frac{π}{2}$)x-$\frac{3}{x}$)9=(2x-$\frac{3}{x}$)9,
令x=1,可得展开式中的各项系数和为-1,
故答案为-1.
点评 本题考查定积分知识的运用,考查展开式中的各项系数和,正确求出a是关键.
练习册系列答案
相关题目
5.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{{2{x_3}+{x_4}}}{{{x_1}{x_2}}}$的取值范围是( )
| A. | (4,16) | B. | (0,12) | C. | (9,21) | D. | (14,16) |
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),A,B为双曲线的左右顶点,若点M在双曲线上,且满足△ABM为一个顶角为120°的等腰三角形,则双曲线的渐近线方程是( )
| A. | y=±x | B. | y=±$\sqrt{2}$x | C. | y=±2x | D. | y=±$\frac{\sqrt{2}}{2}$x |
4.在等差数列{an}中,a3+3a8+a13=120,则a8=( )
| A. | 24 | B. | 22 | C. | 20 | D. | 25 |
5.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否在犯错误的概率不超过0.05的前提下认为“歌迷”与性别有关?
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
| 场数 | 9 | 10 | 11 | 12 | 13 | 14 |
| 人数 | 10 | 18 | 22 | 25 | 20 | 5 |
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否在犯错误的概率不超过0.05的前提下认为“歌迷”与性别有关?
| 非歌迷 | 歌迷 | 总计 | |
| 男 | |||
| 女 | |||
| 总计 |