题目内容
2.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F,过点F的直线与双曲线C交于M,N两点,若仅存在三组|MN|的值,使得|MN|=6a,则双曲线C的渐近线方程为y=$±\sqrt{3}$x.分析 由题意,通径$\frac{2{b}^{2}}{a}$=6a,即可求出双曲线C的渐近线方程.
解答 解:由题意,$\frac{2{b}^{2}}{a}$=6a,
∴$\frac{b}{a}$=$\sqrt{3}$,
∴双曲线C的渐近线方程为y=$±\sqrt{3}$x,
故答案为y=$±\sqrt{3}$x.
点评 本题考查双曲线C的渐近线方程,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
11.若将两个顶点在抛物线y2=4x上,另一个顶点是此抛物线焦点的正三角形的个数记为n,则( )
| A. | n=0 | B. | n=1 | C. | n=2 | D. | n≥3 |
9.某公司某件产品的定价x与销量y之间的数据统计表如下,根据数据,用最小二乘法得出y与x的线性回归直线方程为:$\widehat{y}$=6.5$\widehat{x}$+17.5,则表格中n的值应为( )
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | n | 50 | 70 |
| A. | 45 | B. | 50 | C. | 55 | D. | 60 |
16.已知数列{an}的前n项和为Sn,且对任意正整数n都有an=$\frac{3}{4}$Sn+2成立.若bn=log2an,则b1008=( )
| A. | 2017 | B. | 2016 | C. | 2015 | D. | 2014 |
14.数列{an}满足a1=$\frac{{\sqrt{2}}}{8}$,a2=$\frac{{\sqrt{33}}}{33}$,(an>0),$\frac{{{a}_{n}}^{2}-{{a}_{n-1}}^{2}}{{{a}_{n-1}}^{2}}$=$\frac{{{a}_{n+1}}^{2}-{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$(n≥2),则a2017=( )
| A. | $\frac{{\sqrt{3}}}{64}$ | B. | $\frac{{\sqrt{2}}}{64}$ | C. | $\frac{1}{32}$ | D. | $\frac{33}{32}$ |
12.将函数$y=sin({2x-\frac{π}{6}})$向右平移$\frac{π}{12}$个单位后得到y=g(x)的图象,若函数y=g(x)在区间[a,b](b>a)上的值域是$[{-\frac{1}{2},1}]$,则b-a的最小值m和最大值M分别为( )
| A. | $m=\frac{π}{6},M=\frac{π}{3}$ | B. | $m=\frac{π}{3},M=\frac{2π}{3}$ | C. | $m=\frac{4π}{3},M=2π$ | D. | $m=\frac{2π}{3},M=\frac{4π}{3}$ |