题目内容

2.如图,矩形ABCD中,AB=4,AD=2,E在DC边上,且DE=1,将△ADE沿AE折到△AD'E的位置,使得平面AD'E⊥平面ABCE.
(Ⅰ)求证:AE⊥BD';
(Ⅱ)求三棱锥A-BCD'的体积.

分析 (Ⅰ)连接BD交AE于点O,推导出Rt△ABD~Rt△DAE,从而得到OB⊥AE,OD'⊥AE,由此能证明AE⊥平面OBD'.
(Ⅱ)由VA-BCD'=VD'-ABC,能求出三棱锥A-BCD'的体积.

解答 证明:(Ⅰ)连接BD交AE于点O,依题意得$\frac{AB}{DA}=\frac{AD}{DE}=2$,
所以Rt△ABD~Rt△DAE,
所以∠DAE=∠ABD,所以∠AOD=90°,所以AE⊥BD,
即OB⊥AE,OD'⊥AE,又OB∩OD′=O,
OB,OD'?平面OBD'.
所以AE⊥平面OBD'.
解:(Ⅱ)因为平面AD'E⊥平面ABCE,
由(Ⅰ)知,OD'⊥平面ABCE,
所以OD'为三棱锥D'-ABC的高,
在矩形ABCD中,AB=4,AD=2,DE=1,所以$D'O=\frac{2}{{\sqrt{5}}}$,
所以VA-BCD'=VD'-ABC=$\frac{1}{3}{S_{△ABC}}•D'O$=$\frac{1}{3}×({\frac{1}{2}×4×2})×\frac{2}{{\sqrt{5}}}=\frac{{8\sqrt{5}}}{15}$
即三棱锥A-BCD'的体积为$\frac{{8\sqrt{5}}}{15}$.

点评 本题考查几何体的体积及直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查考查推理论证能力、运算求解能力、空间想象能力,考查化归转化思想、函数与方程思想,数形结合思想,是中档题.

练习册系列答案
相关题目
14.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230

(Ⅰ)把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,请在y=a+be-x和y=a+$\frac{b}{x}$间选取一个建立回归方程表述x,y二者之间的关系(a,b的值精确到0.1);
(Ⅱ)若保险公司在2015年交通事故中随机抽取100例,理赔60万元的有1例,理赔2万元的有19例,理赔0.2万元的有80例.
      利用你得到的回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:回归直线v=$\widehat{α}$+$\widehat{β}$u的斜率和截距的最小二乘法估计分别为:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
一些量的计算值:
$\overline{x}$   $\overline{y}$        $\overline{ω}$        $\overline{φ}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})^{2}$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})^{2}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})({y}_{i}-\overline{y})$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})({y}_{i}-\overline{y})$
18.341.7  0.235  0.062 0.723 0.112 36.3 14.1
表中:ωi=$\frac{1}{{x}_{i}}$,$\overline{ω}$=$\frac{1}{6}$$\sum_{i=1}^{6}{ω}_{i}$;φi=e${\;}^{-{x}_{i}}$,$\overline{φ}$=$\frac{1}{6}$$\sum_{i=1}^{6}{φ}_{i}$,$\frac{1}{40}$=0.025,e-40≈0.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网