题目内容
17.若单位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$与向量$\overrightarrow{e_1}$的夹角为( )| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
分析 可知$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1,<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>=\frac{π}{3}$,这样进行数量积的运算即可求出$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})•\overrightarrow{{e}_{1}}=0$,这样即可得出向量$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$与向量$\overrightarrow{{e}_{1}}$的夹角.
解答 解:$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})•\overrightarrow{{e}_{1}}={\overrightarrow{{e}_{1}}}^{2}-2\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=$1-2×\frac{1}{2}=0$;
∴$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})⊥\overrightarrow{{e}_{1}}$;
∴向量$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$与$\overrightarrow{{e}_{1}}$的夹角为$\frac{π}{2}$.
故选A.
点评 考查单位向量的概念,向量数量积的运算及计算公式,向量夹角的概念.
练习册系列答案
相关题目
5.已知R为实数集,集合A={x|x2-2x-3≥0},则∁RA=( )
| A. | (-1,3) | B. | [-1,3] | C. | (-3,1) | D. | [-3,1] |
12.
某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为A、B、C三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
| 工种类别 | A | B | C |
| 赔付频率 | $\frac{1}{1{0}^{5}}$ | $\frac{2}{1{0}^{5}}$ | $\frac{1}{1{0}^{4}}$ |
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
9.我国古代数学名著《九章算术》第三章“衰分”介绍比例分配:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别得100,60,36,21.6个单位,递减的比例是40%,今共有粮食m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丁分得2石,乙、丙所得之和为40石,则衰分比与m的值分别是( )
| A. | 75%,170 | B. | 75%,340 | C. | 25%,170 | D. | 25%,340 |
6.
经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,建立了两个不同的回归方程y(1)=29.9+50.2×$\frac{1}{x}$和y(2)=33.9+125.9e-x表述x,y二者之间的关系.
(Ⅰ)计算R2的值,判断这两个回归方程中哪个拟合效果更好?并解释更好的这个拟合所对R2的意义;
(Ⅱ)若保险公司在每次交通事故中理赔60万元的概率为0.01,理赔2万元的概率为0.19,理赔0.2万元的概率为0.8,利用你得到的拟合效果更好的这一个回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:对回归直线y=$\widehat{α}$+$\widehat{β}$x,有R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
一些量的计算值:
表中:${\widehat{{y}_{i}}}^{(1)}$=29.9+50.2×$\frac{1}{{x}_{i}}$,${\widehat{{y}_{i}}}^{(2)}$=33.9+125.9e${\;}^{-{x}_{i}}$,$\frac{1}{40}$=0.025,e-40≈0.
| 界桩公里数 1001 | 1005 | 1010 | 1020 | 1025 | 1049 |
| 交通事故数 80 | 40 | 35 | 33 | 32 | 30 |
(Ⅰ)计算R2的值,判断这两个回归方程中哪个拟合效果更好?并解释更好的这个拟合所对R2的意义;
(Ⅱ)若保险公司在每次交通事故中理赔60万元的概率为0.01,理赔2万元的概率为0.19,理赔0.2万元的概率为0.8,利用你得到的拟合效果更好的这一个回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:对回归直线y=$\widehat{α}$+$\widehat{β}$x,有R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
一些量的计算值:
| $\overline{y}$ $\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ | $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(1)})^{2}$ | $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(2)})^{2}$ |
| 41.7 1821 | 0.875 | 48.4 |