题目内容
已知sin(α+
)=
,
<α<π,则求sin(
-α)= .
| π |
| 6 |
| 1 |
| 3 |
| π |
| 3 |
| π |
| 12 |
考点:两角和与差的正弦函数
专题:计算题,三角函数的求值
分析:由于
<α<π,则
<α+
<
,又sin(α+
)=
,则
<α+
<π,由平方关系即可求出cos(α+
),由sin(
-α)=sin(
-
-α)=sin[(
-α)-
],运用两角差的正弦公式和诱导公式:
-α,即可得到答案.
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 6 |
| 1 |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| π |
| 4 |
| π |
| 2 |
解答:
解:由于
<α<π,则
<α+
<
,
又sin(α+
)=
,则
<α+
<π,
即有cos(α+
)=-
=-
,
则sin(
-α)=sin(
-
-α)=sin[(
-α)-
]
=
[sin[(
-α)-cos(
-α)]
=
[cos(α+
)-sin(α+
)]
=
(-
-
)=-
.
故答案为:-
.
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
又sin(α+
| π |
| 6 |
| 1 |
| 3 |
| π |
| 2 |
| π |
| 6 |
即有cos(α+
| π |
| 6 |
1-
|
2
| ||
| 3 |
则sin(
| π |
| 12 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| π |
| 4 |
=
| ||
| 2 |
| π |
| 3 |
| π |
| 3 |
=
| ||
| 2 |
| π |
| 6 |
| π |
| 6 |
=
| ||
| 2 |
2
| ||
| 3 |
| 1 |
| 3 |
4+
| ||
| 6 |
故答案为:-
4+
| ||
| 6 |
点评:本题考查三角函数的求值,考查同角的平方关系和诱导公式及两角差的正弦公式,注意角的变换,考查运算能力,属于中档题.
练习册系列答案
相关题目
若直线x+y+a=0过圆x2+y2-2x+4y=0的圆心,则a的值为( )
| A、0 | B、-1 | C、2 | D、1 |