ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªµÈ±ß¡÷AB¡äC¡ä±ß³¤Îª$\sqrt{2}$£¬¡÷BCDÖУ¬$BD=CD=1£¬BC=\sqrt{2}$£¨Èçͼ1Ëùʾ£©£¬ÏÖ½«BÓëB¡ä£¬CÓëC¡äÖØºÏ£¬½«¡÷AB¡äC¡äÏòÉÏÕÛÆð£¬Ê¹µÃ$AD=\sqrt{3}$£¨Èçͼ2Ëùʾ£©£®
£¨1£©ÈôBCµÄÖеãO£¬ÇóÖ¤£ºÆ½ÃæBCD¡ÍÆ½ÃæAOD£»
£¨2£©ÔÚÏß¶ÎACÉÏÊÇ·ñ´æÔÚÒ»µãE£¬Ê¹EDÓëÃæBCD³É30¡ã½Ç£¬Èô´æÔÚ£¬Çó³öCEµÄ³¤¶È£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÇóÈýÀâ×¶A-BCDµÄÍâ½ÓÇòµÄ±íÃæ»ý£®

·ÖÎö £¨1£©ÔËÓÃÆ½Ã漸ºÎÖеÈÑüÈý½ÇÐεÄÈýÏߺÏÒ»£¬½áºÏÏßÃæ´¹Ö±µÄÅж¨¶¨ÀíºÍ̾̾´¹Ö±µÄÅж¨¶¨Àí£¬¼´¿ÉµÃÖ¤£»
£¨2£©£¨·¨1£©×÷AH¡ÍDO£¬½»DOµÄÑÓ³¤ÏßÓÚH£¬ÔËÓÃÆ½Ã漸ºÎÖÐÓйØÐÔÖÊ£¬ÒÔ¼°ÏßÃæ´¹Ö±ºÍ̾̾´¹Ö±µÄÐÔÖÊ£¬¿ÉµÃ¡ÏEDF¾ÍÊÇEDÓëÃæBCDËù³ÉµÄ½Ç£®ÔËÓÃÖ±½ÇÈý½ÇÐεÄ֪ʶ£¬¼ÆËã¿ÉµÃCE£»
£¨·¨2£©ÒÔDÎª×ø±êÔ­µã£¬ÒÔÖ±ÏßDB£¬DC·Ö±ðΪxÖᣬyÖáµÄÕý·½Ïò£¬ÒÔ¹ýDÓëÆ½ÃæBCD´¹Ö±µÄÖ±ÏßΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÉèCE=x£¬Çó³öEµÄ×ø±ê£¬ÔËÓ÷¨ÏòÁ¿£¬ÒÔ¼°ÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨3£©½«Ô­Í¼²¹ÐγÉÕý·½Ì壬ÓÉAC=$\sqrt{2}$£¬¿ÉµÃÕý·½Ìå±ß³¤Îª1£¬¿ÉµÃÍâ½ÓÇòµÄÖ±¾¶¼´ÎªÕý·½ÌåµÄ¶Ô½ÇÏß³¤£¬ÓÉÇòµÄ±íÃæ»ý¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£º¡ß¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¡÷BCDΪµÈÑüÈý½ÇÐΣ¬
ÇÒOΪÖе㣬
¡àBC¡ÍAO£¬BC¡ÍDO£¬
¡ßAO¡ÉDO=O£¬¡àBC¡ÍÆ½ÃæAOD£¬
ÓÖBC?ÃæABC
¡àÆ½ÃæBCD¡ÍÆ½ÃæAOD¡­£¨3·Ö£©
£¨2£©£¨·¨1£©×÷AH¡ÍDO£¬½»DOµÄÑÓ³¤ÏßÓÚH£¬
ÔòÆ½ÃæBCD¡ÉÆ½ÃæAOD=HD£¬ÔòAH¡ÍÆ½ÃæBCD£¬
ÔÚRt¡÷BCDÖУ¬$OD=\frac{1}{2}BC=\frac{{\sqrt{2}}}{2}$£¬
ÔÚRt¡÷ACOÖУ¬$AO=\frac{{\sqrt{3}}}{2}AC=\frac{{\sqrt{6}}}{2}$£¬
ÔÚ¡÷AODÖУ¬$cos¡ÏADO=\frac{{A{D^2}+O{D^2}-A{O^2}}}{2AD•OD}=\frac{{\sqrt{6}}}{3}$£¬
¡à$sin¡ÏADO=\frac{{\sqrt{3}}}{3}$£¬ÔÚRt¡÷ADHÖÐAH=ADsin¡ÏADO=1£¬
Éè$CE=x£¨0¡Üx¡Ü\sqrt{2}£©$£¬×÷EF¡ÍCHÓÚF£¬Æ½ÃæAHC¡ÍÆ½ÃæBCD£¬
¡àEF¡ÍÆ½ÃæBCD£¬¡ÏEDF¾ÍÊÇEDÓëÃæBCDËù³ÉµÄ½Ç£®
ÓÉ$\frac{EF}{AH}=\frac{CE}{AC}$£¬¡à$EF=\frac{{\sqrt{2}}}{2}x$£¨¡ù£©£¬
ÔÚRt¡÷CDEÖУ¬$DE=\sqrt{C{E^2}+C{D^2}}=\sqrt{{x^2}+1}$£¬
ҪʹEDÓëÃæBCD³É30¡ã½Ç£¬Ö»Ðèʹ$\frac{{\frac{{\sqrt{2}}}{2}x}}{{\sqrt{{x^2}+1}}}=\frac{1}{2}$£¬
¡àx=1£¬µ±CE=1ʱ£¬EDÓëÃæBCD³É30¡ã½Ç¡­£¨9·Ö£©
£¨·¨2£©Ôڽⷨ1Öнӣ¨¡ù£©£¬ÒÔDÎª×ø±êÔ­µã£¬
ÒÔÖ±ÏßDB£¬DC·Ö±ðΪxÖᣬyÖáµÄÕý·½Ïò£¬
ÒÔ¹ýDÓëÆ½ÃæBCD´¹Ö±µÄÖ±ÏßΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ
Ôò$D£¨0£¬0£¬0£©£¬E£¨\frac{{\sqrt{2}}}{2}x£¬1£¬\frac{{\sqrt{2}}}{2}x£©$£¬$\overrightarrow{DE}=£¨\frac{{\sqrt{2}}}{2}x£¬1£¬\frac{{\sqrt{2}}}{2}x£©$£¬
ÓÖÆ½ÃæBCDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow n=£¨0£¬0£¬1£©$£¬ÒªÊ¹EDÓëÃæBCD³É30¡ã½Ç£¬
Ö»Ðèʹ$\overrightarrow{DE}Óë\overrightarrow n$³É60¡ã£¬
Ö»Ðèʹ$\frac{{|{\overrightarrow{DE}•\overrightarrow n}|}}{{|{\overrightarrow{DE}}|•|{\overrightarrow n}|}}=cos{60¡ã}$£¬¼´$\frac{{\frac{{\sqrt{2}}}{2}x}}{{\sqrt{{x^2}+1}}}=\frac{1}{2}$£¬¡àx=1£¬
µ±CE=1ʱEDÓëÃæBCD³É30¡ã½Ç£»
£¨3£©½«Ô­Í¼²¹ÐγÉÕý·½Ì壬ÓÉAC=$\sqrt{2}$£¬¿ÉµÃÕý·½Ìå±ß³¤Îª1£¬
ÔòÍâ½ÓÇòµÄÖ±¾¶Îª$\sqrt{3}$£¬¼´°ë¾¶$r=\frac{{\sqrt{3}}}{2}$£¬
±íÃæ»ý£ºS=4¦Ðr2=3¦Ð¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é̾̾´¹Ö±µÄÅж¨£¬×¢ÒâÔËÓÃÏßÃæ´¹Ö±µÄÅж¨£¬¿¼²éÏßÃæ½ÇµÄÇ󷨣¬×¢ÒâÔËÓÃÏßÃæ½ÇµÄ¶¨ÒåºÍÏòÁ¿·¨£¬¿¼²éÈýÀâ×¶µÄÍâ½ÓÇòµÄ±íÃæ»ý£¬×¢ÒâÔËÓø˼Ï룬¿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø