题目内容
(本小题满分15分)
如图,在半径为
的
圆形(
为圆心)铝皮上截取一块矩形材料
,其中点
在圆上,点
、
在两半径上,现将此矩形铝皮
卷成一个以
为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长
,圆柱的体积为
.

(1)写出体积
关于
的函数关系式,并指出定义域;
(2)当
为何值时,才能使做出的圆柱形罐子体积
最大?最大体积是多少?
如图,在半径为
(1)写出体积
(2)当
(1)
(2)当
时,V有最大值
试题分析:(1)连结OB,∵
设圆柱底面半径为
所以
(2)由
因此
所以当
点评:在求解函数应用题时注意实际限定条件对题目的影响
练习册系列答案
相关题目