题目内容
数列1,2+
,3+
+
,4+
+
+
,…的前n项和Sn= .
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件推导出an=n+1-
,由此利用分组求和法能求出结果.
| 1 |
| 2n-1 |
解答:
解:由题意知an=n+
+
+
+…+
=n+
=n+1-
,
∴Sn=(1+2+3+…+n)+n-(1++
+
+…+
)
=
+n+
=
n2+
n+2-
.
故答案为:
n2+
n+2-
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n-1 |
=n+
| ||||
1-
|
=n+1-
| 1 |
| 2n-1 |
∴Sn=(1+2+3+…+n)+n-(1++
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
=
| n(n+1) |
| 2 |
| ||||
1-
|
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
故答案为:
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目
椭圆
+
=1的焦点坐标为( )
| y2 |
| 25 |
| x2 |
| 16 |
| A、(0,±3) |
| B、(±3,0) |
| C、(0,±5) |
| D、(±4,0) |
为了得到函数y=sin(2x-
)的图象,只需把正弦曲线y=sinx上所有点( )
| π |
| 6 |
A、向右平移
| ||||
B、向左平移
| ||||
C、向右平移
| ||||
D、向左平移
|