题目内容
(文科)抛物线y2=4mx(m>0)的焦点到双曲线
-
=1的一条渐近线的距离为3,则此抛物线的方程为( )
| x2 |
| 16 |
| x2 |
| 9 |
| A、y2=x |
| B、y2=15x |
| C、y2=4x |
| D、y2=20x |
考点:双曲线的简单性质,抛物线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:先求出抛物线y2=4mx(m>0)的焦点坐标和双曲线 的一条渐近线方程,再由点到直线的距离求出m的值,从而得到抛物线的方程.
解答:
解:抛物线y2=4mx(m>0)的焦点为F(m,0),
双曲线
-
=1的一条渐近线为3x-4y=0,
由题意知
=3
∴m=5.
∴抛物线的方程为y2=20x
故选:D.
双曲线
| x2 |
| 16 |
| x2 |
| 9 |
由题意知
| |3m| |
| 5 |
∴m=5.
∴抛物线的方程为y2=20x
故选:D.
点评:本题考查抛物线的简单性质,解题时要结合双曲线和抛物线的性质进行求解,要注意公式的灵活运用.
练习册系列答案
相关题目
sin(-
)=( )
| 7π |
| 6 |
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|
已知向量
=(2,3),
=(-3,0),则向量
的坐标为( )
| AB |
| BC |
| AC |
| A、(5,3) |
| B、(-1,3) |
| C、(-5,-3) |
| D、(1,-3) |
图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有( )种不同的取法.
| A、120 | B、16 | C、64 | D、39 |
在半径为2的半圆圆周上取两点A、B,则圆心角∠AOB<
的概率为( )
| π |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合M={x∈Z|x2-5x+4<0},N={1,2,3},则M∩N=( )
| A、{1,2,3} |
| B、{2,3,4} |
| C、{2,3} |
| D、{1,2,4} |
已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个实数p,q,且p≠q,若不等式
>1恒成立,则实数a的取值范围为( )
| f(p+1)-f(q+1) |
| p-q |
| A、[11,+∞) |
| B、[13,+∞) |
| C、[15,+∞) |
| D、[17,+∞) |
关于x的不等式ax-b>0的解集为(-∞,-1),则关于x的不等式(x-2)(ax+b)<0的解集为( )
| A、(-1,2) |
| B、(1,2) |
| C、(-∞,-1)∪(2,+∞) |
| D、(-∞,1)∪(2,+∞) |
(x2-
)9的展开式中的常数项是( )
| 1 |
| 2x |
| A、84 | ||
B、
| ||
C、
| ||
D、-
|