题目内容

已知等比数列{an}的前n项和Sn=t•2n-1+1,则t的值为
 
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:先根据等比数列的前n项的和分别求得a1,a2,a3的值进而利用等比数列的等比中项求得t.
解答: 解:∵等比数列{an}中,Sn=t•2n-1+1,
∴a1=t+1,a2=S2-S1=t,a3=S3-S2=2t,
∴(t+1)•2t=t2,∴t=-2.
故答案为:-2.
点评:本题主要考查了等比数列的前n项的和,考查等比数列的等比中项,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网