题目内容
正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使C1N⊥MG,则∠D1NG=______.

连接MN,
∵M,N分别是AA1和BB1的中点,
由正方体的几何特征可得MN∥C1D1,
在正方体ABCD-A1B1C1D1中,D1C1⊥平面B1C1CB
∵C1N?平面B1C1CB
∴D1C1⊥C1N
∴MN⊥C1N
又∵C1N⊥MG,MN∩MG=M,MD1,MG?平面MNG
∴C1N⊥平面MNG
又∵NG?平面MNG
∴C1N⊥NG
故∠D1NG=90°
故答案为:90°

∵M,N分别是AA1和BB1的中点,
由正方体的几何特征可得MN∥C1D1,
在正方体ABCD-A1B1C1D1中,D1C1⊥平面B1C1CB
∵C1N?平面B1C1CB
∴D1C1⊥C1N
∴MN⊥C1N
又∵C1N⊥MG,MN∩MG=M,MD1,MG?平面MNG
∴C1N⊥平面MNG
又∵NG?平面MNG
∴C1N⊥NG
故∠D1NG=90°
故答案为:90°
练习册系列答案
相关题目