题目内容

已知
4
<α<π,tanα+
1
tanα
=-
10
3

(1)求tanα的值;
(2)求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
4
)
的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)由tanα+
1
tanα
=-
10
3
=-3-
1
3
,解得tanα=-3或-
1
3
.由于
4
<α<π,可得tanα>-1,即可得出;
(2)利用倍角公式、同角三角函数基本关系式即可得出.
解答: 解:(1)∵tanα+
1
tanα
=-
10
3
=-3-
1
3
,解得tanα=-3或-
1
3

4
<α<π,∴tanα>-1,
tanα=-
1
3

(2)
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
4
)
=
4sinα+6cos2
α
2
-3
sinα-cosα
=
4sinα+3cosα
sinα-cosα
=
4tanα+3
tanα-1
=
-4
3
+3
-
1
3
-1
=-
5
4
点评:本题考查了倍角公式、同角三角函数基本关系式、方程的解法、正切函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网