题目内容

10.已知正项等差数列{an}满足:Sn2=a13+a23+a33+…+an3,其中Sn是数列{an}的前n项和.
(I)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足:bn=$\frac{{2+{a_n}}}{{{2^{2+{a_n}}}{S_n}}}$,求数列{bn}的前n项的和Tn

分析 (I)利用递推关系,令n=1,2,解出a1,a2,可得公差d,再利用等差数列的通项公式即可得出.
(II)利用“裂项求和”方法即可得出.

解答 解:(  I )∵${S_n}^2={a_1}^3+{a_2}^3+{a_3}^3+…+{a_n}^3$,
∴$\left\{{\begin{array}{l}{{S_1}^2={a_1}^3}\\{{S_2}^2={a_1}^3+{a_2}^3}\end{array}}\right.$,
∵{an}为正项等差数列,解之得$\left\{{\begin{array}{l}{{a_1}=1}\\{{a_2}=2}\end{array}}\right.$,
则d=1,所以an=1+(n-1)1=n;
( II)${b_n}=\frac{{2+{a_n}}}{{{2^{2+{a_n}}}{S_n}}}=\frac{2+n}{{{2^{2+n}}\frac{n(n+1)}{2}}}=\frac{2+n}{{{2^{n+1}}n(n+1)}}=\frac{1}{{{2^n}n}}-\frac{1}{{{2^{n+1}}(n+1)}}$${T_n}={b_1}+{b_2}+{b_3}+…+{b_n}=\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{24}+\frac{1}{24}-\frac{1}{32}+…+\frac{1}{{{2^n}n}}-\frac{1}{{{2^{n+1}}(n+1)}}=\frac{1}{2}-\frac{1}{{{2^{n+1}}(n+1)}}$
即${T_n}=\frac{1}{2}-\frac{1}{{{2^{n+1}}(n+1)}}$

点评 本题考查了递推关系、等差数列的通项公式、“裂项求和”方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网