题目内容
设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(Ⅰ)求数列{an}的首项,并证明数列{an}为等差数列;
(Ⅱ)令bn=
+
(n∈N+),求证b1+b2+…+bn-2n<2.
(Ⅰ)求数列{an}的首项,并证明数列{an}为等差数列;
(Ⅱ)令bn=
| an+1 |
| an |
| an |
| an+1 |
考点:数列递推式,等差关系的确定
专题:综合题,等差数列与等比数列
分析:(Ⅰ)由题意得
=
,an>0,平方可得Sn=
(an+2)2,当n≥2时,an=Sn-Sn-1=
(an+2)2-
(an-1+2)2,变形整理得(an+an-1)(an-an-1-4)=0,即可得出结论;
(Ⅱ)利用裂项法求和,即可证明结论.
| an+2 |
| 2 |
| 2Sn |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
(Ⅱ)利用裂项法求和,即可证明结论.
解答:
(Ⅰ)解:由题意得
=
,an>0,
平方可得Sn=
(an+2)2,
当n=1时,a1=
(a1+2)2,解得a1=2,
当n≥2时,an=Sn-Sn-1=
(an+2)2-
(an-1+2)2,
变形整理得(an+an-1)(an-an-1-4)=0,
由题意知an+an-1≠0,∴an-an-1=4
∴数列{an}为首项为2,公差为4的等差数列,
∴an=2+4(n-1)=4n-2
( II)证明:令cn=bn-2,则cn=
+
-2=2(
-
),
b1+b2+…+bn-n=c1+c2+…+cn
=[(1-
)+(
-
)+…+(
-
)]•2=2-
.
| an+2 |
| 2 |
| 2Sn |
平方可得Sn=
| 1 |
| 8 |
当n=1时,a1=
| 1 |
| 8 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 8 |
| 1 |
| 8 |
变形整理得(an+an-1)(an-an-1-4)=0,
由题意知an+an-1≠0,∴an-an-1=4
∴数列{an}为首项为2,公差为4的等差数列,
∴an=2+4(n-1)=4n-2
( II)证明:令cn=bn-2,则cn=
| an+1 |
| an |
| an |
| an+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
b1+b2+…+bn-n=c1+c2+…+cn
=[(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 2 |
| 2n+1 |
点评:本题考查等差数列的性质,考查数列的通项与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目