题目内容
20.实数x,y满足条件$\left\{\begin{array}{l}2x-y≥0\\ x+y-4≥0\\ x≤3.\end{array}\right.$,则$\frac{y^2}{x^2}$的取值范围为( )| A. | [4,+∞) | B. | $[\frac{1}{3},2]$ | C. | [0,4] | D. | $[\frac{1}{9},4]$ |
分析 由约束条件作出可行域,然后结合$\frac{y^2}{x^2}$的几何意义,即可行域内的点与原点连线的斜率的平方求得答案.
解答
解:由约束条件$\left\{\begin{array}{l}2x-y≥0\\ x+y-4≥0\\ x≤3.\end{array}\right.$作出可行域如图,
设$\frac{y}{x}=k$,则k为可行域内的点与原点连线的斜率,
联立$\left\{\begin{array}{l}{x=3}\\{x+y-4=0}\end{array}\right.$,解得A(3,1),
得${k}_{OA}=\frac{1}{3}$,
∴$\frac{1}{3}≤k≤2$,故$\frac{1}{9}≤{k^2}≤4$.
∴$\frac{y^2}{x^2}$的取值范围为[$\frac{1}{9},4$].
故选:D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
11.设命题p:?x>0,x>lnx.则¬p为( )
| A. | ?x>0,x≤lnx | B. | ?x>0,x<lnx | C. | ?x0>0,x0>lnx0 | D. | ?x0>0,x0≤lnx0 |
8.已知△ABC中,AC=2,AB=4,AC⊥BC,点P满足$\overrightarrow{AP}$=x$\overrightarrow{AC}$+y$\overrightarrow{AB}$,x+2y=1,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值等于( )
| A. | -2 | B. | -$\frac{28}{9}$ | C. | -$\frac{25}{8}$ | D. | -$\frac{7}{2}$ |
5.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<1)\\ f(x-1),(x≥1)\end{array}$,则f(log29)的值为( )
| A. | 9 | B. | $\frac{9}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{9}{8}$ |
9.设m∈R,函数f(x)=(x-m)2+(e2x-2m)2,若存在x0使得f(x0)≤$\frac{1}{5}$成立,则m=( )
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
10.若△ABC的面积为64,边AB与AC的等比中项为12,则sinA=( )
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{8}{9}$ |