题目内容
已知数列{an}的前n项和为Sn,且对任意n∈N*,都有Sn+an=2n成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+1-an,xn=
+
,若记数列{an}的前n项和为Tn,求证:Tn>2n-
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+1-an,xn=
| 1 |
| 1+bn |
| 1 |
| 1-bn+1 |
| 1 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)利用公式法即可求得通项公式;
(Ⅱ)由(Ⅰ)得出Xn,放缩得xn=
+
=2+
-
>2+
-
=2+
,即得Tn>(2+
)+(2+
)+…+(2+
)=2n+
=2n+
-
>2n-
.
(Ⅱ)由(Ⅰ)得出Xn,放缩得xn=
| 1 |
| 1+bn |
| 1 |
| 1-bn+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1+1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
解答:
解:(Ⅰ)∵Sn+an=2n①
∴n≥2时,Sn-1+an-1=2(n-1)②
①-②可得2an=an-1+2
∴2(an-2)=an-1-2
又当n=1时,s1+a1=2,∴a1=1,∴{an-2}是以1为首项,
为公比的等比数列,
∴an-2=( (
)n-1,∴an=2+(
)n-1;
(Ⅱ)bn=an+1-an=-
,
∴xn=
+
=
+
=
+
=2+
-
>2+
-
=2+
,
∴Tn>(2+
)+(2+
)+…+(2+
)=2n+
=2n+
-
>2n-
.
∴n≥2时,Sn-1+an-1=2(n-1)②
①-②可得2an=an-1+2
∴2(an-2)=an-1-2
又当n=1时,s1+a1=2,∴a1=1,∴{an-2}是以1为首项,
| 1 |
| 2 |
∴an-2=( (
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)bn=an+1-an=-
| 1 |
| 2n |
∴xn=
| 1 |
| 1+bn |
| 1 |
| 1-bn+1 |
| 1 | ||
1-
|
| 1 | ||
1+
|
| 2n |
| 2n-1 |
| 2n+1 |
| 2n+1+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1+1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
∴Tn>(2+
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:本题主要考查利用公式an=sn-sn-1(n≥2)求数列通项公式的方法及等比数列求和公式知识,考查不等式的证明及放缩,考查学生的运算求解能力,推理论证能力,属难题.
练习册系列答案
相关题目