题目内容
求证:
+
>
.
证明:因为
+
和
都是正数,
所以为了证明
+
>
,
只需证明(
+
)2>(
)2,
展开得5+2
>5,即2
>0,显然成立,
所以不等式
+
>
.上述证明过程应用了( )
| 2 |
| 3 |
| 5 |
证明:因为
| 2 |
| 3 |
| 5 |
所以为了证明
| 2 |
| 3 |
| 5 |
只需证明(
| 2 |
| 3 |
| 5 |
展开得5+2
| 6 |
| 6 |
所以不等式
| 2 |
| 3 |
| 5 |
| A、综合法 | B、分析法 |
| C、综合法、分析法混合 | D、间接证法 |
考点:综合法与分析法(选修)
专题:证明题,分析法
分析:分析法是果索因,基本步骤:要证…只需证…,只需证…,分析法是从求证的不等式出发,找到使不等式成立的充分条件,把证明不等式的问题转化为判定这些充分条件是否具有的问题.
解答:
解:分析法是果索因,基本步骤:要证…只需证…,只需证…
结合证明过程,证明过程应用了分析法.
故选:B.
结合证明过程,证明过程应用了分析法.
故选:B.
点评:解决本题的关键是对分析法的概念要熟悉,搞清分析法证题的理论依据,掌握分析法的证题原理.
练习册系列答案
相关题目
若2
,2
,2
成等比数列,则点( x,y )在平面直角坐标系内的轨迹是( )
| 3x |
| x+y |
| x+1 |
| A、一段圆弧 |
| B、椭圆的一部分 |
| C、双曲线一支的一部分 |
| D、抛物线的一部分 |
若a<b<0,则下列不等关系中,不能成立的是( )
A、
| ||||
B、
| ||||
C、a
| ||||
D、a
|
已知椭圆准线x=4对应焦点(2,0),离心率e=
,则椭圆方程为( )
| 1 |
| 2 |
A、
| ||||
| B、3x2+y2+28y+60=0 | ||||
| C、3x2+4y2-8x=0 | ||||
| D、2x2+3y2-7x+4=0 |
不等式
>1的解集为( )
| 2 |
| x-1 |
| A、{x|x>3} |
| B、{x|1<x<3} |
| C、{x|x<3} |
| D、{x|x<3或x>1} |
集合{a,b,c,d}的子集有( )
| A、4个 | B、8个 |
| C、16个 | D、32个 |
若x>y>1,0<a<1,那么下列各式中正确的是( )
| A、x-a>y-a |
| B、logax>logay |
| C、ax<ay |
| D、ax>ay |
下列命题中,真命题是( )
| A、空间不同三点确定一个平面 |
| B、空间两两相交的三条直线确定一个平面 |
| C、两组对边相等的四边形是平行四边形 |
| D、和同一直线都相交的三条平行线在同一平面内 |