题目内容

16.若y=alnx+bx2+x在x=1和x=2处有极值,则a=-$\frac{2}{3}$,b=-$\frac{1}{6}$.

分析 函数的极值点处的导数值为0,列出方程,求出a,b的值.

解答 解:f′(x)=$\frac{a}{x}$+2bx+1,
由已知得:$\left\{\begin{array}{l}{f′(1)=0}\\{f′(2)=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{a+2b+1=0}\\{\frac{1}{2}a+4b+1=0}\end{array}\right.$,
∴a=-$\frac{2}{3}$,b=-$\frac{1}{6}$,
故答案为:-$\frac{2}{3}$,-$\frac{1}{6}$.

点评 本题考查了导数的应用,考查函数极值的意义,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网