题目内容

已知f(x)=x+log2
x
9-x
,则f(1)+f(2)+f(3)+…+f(8)的值为
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(x)+f(9-x)=(x+log2
x
9-x
)+(9-x+log2
9-x
x
)=9,由此能求出f(1)+f(2)+f(3)+…+f(8)的值.
解答: 解:∵f(x)=x+log2
x
9-x

∴f(x)+f(9-x)=(x+log2
x
9-x
)+(9-x+log2
9-x
x
)=9,
∴f(1)+f(2)+f(3)+…+f(8)
=[f(1)+f(8)]+[f(2)+f(7)]+[f(3)+f(6)]+[f(4)+f(5)]
=9×4=36.
故答案为:36.
点评:本题考查函数值的求法,是基础题,解题的关键是推导出f(x)+f(9-x)=9.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网