题目内容

已知a,b,c为三条互相平行的直线,α,β为两不重合平面,a⊆α,b⊆β,c⊆β,则α与β的关系是(  )
A、相交B、平行
C、平行或相交D、不能确定
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:由平面和平面的位置关系:平行、相交,以及线面平行的判定和性质,即可判断.
解答: 解:设α,β相交,α∩β=l,
则由a∥b,可推出a∥l,如图,
α∥β也成立,如图所示.
故选:C.
点评:本题考查平面与平面的位置关系:平行、相交,线面平行的判定和性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网