题目内容

1.已知随圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4$\sqrt{3}$,则椭圆E的焦距的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[2$\sqrt{3}$,+∞)D.[4$\sqrt{3}$,+∞)

分析 利用三角形的面积公式和椭圆的性质得出a≥4,再根据三角形的面积公式得出当A与短轴端点重合时,c取得最小值,利用椭圆的性质求出2c的最小值即可.

解答 解:取椭圆的左焦点F1,连接AF1,BF1
则AB与FF1互相平分,
∴四边形AFBF1是平行四边形,
∴AF1=BF,
∵AF+AF1=2a,∴AF+BF=2a,
∵S△ABF=$\frac{1}{2}$AF•BF•sin120°=$\frac{\sqrt{3}}{4}$AF•BF=4$\sqrt{3}$,
∴AF•BF=16,
∵2a=AF+BF≥2$\sqrt{AF•BF}$=8,∴a≥4,
又S△ABF=$\frac{1}{2}×c×2|{y}_{A}|$=c•|yA|=4$\sqrt{3}$,
∴c=$\frac{4\sqrt{3}}{|{y}_{A}|}$,
∴当|yA|=b=$\sqrt{{a}^{2}-{c}^{2}}$时,c取得最小值,此时b=$\sqrt{3}$c,
∴a2=3c2+c2=4c2,∴2c=a,
∴2c≥4.
故选B.

点评 本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网