ÌâÄ¿ÄÚÈÝ
4£®Ä³µ¥Î»ÊµÐÐÐÝÄê¼ÙÖÆ¶ÈÈýÄêÒÔÀ´£¬10ÃûÖ°¹¤ÐÝÄê¼ÙµÄ´ÎÊý½øÐеĵ÷²éͳ¼Æ½á¹ûÈç±íËùʾ£º| ÐݼٴÎÊý | 0 | 1 | 2 | 3 |
| ÈËÊý | 1 | 2 | 4 | 3 |
£¨1£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæDZíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®ºÍ£¬¼Ç¡°º¯Êýf£¨x£©=x2-¦Çx-1ÔÚÇø¼ä£¨4£¬6£©ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã¡±ÎªÊ¼þA£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊP£»
£¨2£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæαíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®
·ÖÎö £¨1£©º¯Êýf£¨x£©=x2-¦Çx-1¹ý£¨0£¬-1£©µã£¬ÔÚÇø¼ä£¨4£¬6£©ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÍƳö¦Ç=4»ò¦Ç=5£¬È»ºóÇó½â¸ÅÂʼ´¿É£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
£¨2£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæαíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ£¬Ôò¦ÎµÄ¿ÉÄÜȡֵ·Ö±ðÊÇ0£¬1£¬2£¬3£¬Çó³ö¸ÅÂÊ£¬µÃµ½¦ÎµÄ·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû¼´¿É£®
½â´ð ½â£º£¨1£©º¯Êýf£¨x£©=x2-¦Çx-1¹ý£¨0£¬-1£©µã£¬ÔÚÇø¼ä£¨4£¬6£©ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬
Ôò±ØÓÐ$\left\{\begin{array}{l}{f£¨4£©£¼0}\\{f£¨6£©£¾0}\end{array}\right.$¼´£º$\left\{\begin{array}{l}{16-4¦Ç-1£¼0}\\{36-6¦Ç-1£¾0}\end{array}\right.$£¬½âµÃ£º$\frac{15}{4}£¼¦Ç£¼\frac{35}{6}$
ËùÒÔ£¬¦Ç=4»ò¦Ç=5¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨3·Ö£©
µ±¦Ç=4ʱ£¬P1=$\frac{{C}_{4}^{2}+{C}_{2}^{1}{C}_{3}^{1}}{{C}_{10}^{2}}$=$\frac{4}{15}$£¬µ±¦Ç=5ʱ£¬${P_2}=\frac{C_4^1C_3^1}{{C_{10}^2}}=\frac{4}{15}$
¦Ç=4Óë¦Ç=5Ϊ»¥³âʼþ£¬ÓÉ»¥³âʼþÓÐÒ»¸ö·¢ÉúµÄ¸ÅÂʹ«Ê½
ËùÒÔ¡¡$P={P_1}+{P_2}=\frac{4}{15}+\frac{4}{15}=\frac{8}{15}$¡£¨6·Ö£©
£¨2£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæαíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ£¬
Ôò¦ÎµÄ¿ÉÄÜȡֵ·Ö±ðÊÇ0£¬1£¬2£¬3£¬¡£¨7·Ö£©
ÓÚÊÇ$P£¨{¦Î=0}£©=\frac{C_2^2+C_4^2+C_3^2}{{C_{10}^2}}=\frac{2}{9}$£¬$P£¨{¦Î=1}£©=\frac{C_2^1+C_2^1C_4^1+C_4^1C_3^1}{{C_{10}^2}}=\frac{22}{45}$£¬
$P£¨{¦Î=2}£©=\frac{C_4^1+C_2^1C_3^1}{{C_{10}^2}}=\frac{2}{9}$£¬P£¨¦Î=3£©=$\frac{{C}_{3}^{1}}{{C}_{10}^{2}}$=$\frac{1}{15}$¡¡¡¡¡£¨10·Ö£©
´Ó¶ø¦ÎµÄ·Ö²¼ÁУº
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{2}{9}$ | $\frac{22}{45}$ | $\frac{2}{9}$ | $\frac{1}{15}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÔËæ»ú±äÁ¿µÄ·Ö²¼ÁÐµÄÆÚÍûµÄÇ󷨣¬º¯ÊýµÄÁãµãÅÐÅж϶¨ÀíµÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®